Тема 15. ФИЗИОЛОГИЯ СЛУХОВОЙ СИСТЕМЫ.

Слуховая система - одна из важнейших дистантных сенсорных систем человека в связи с возникновением у него речи как средства общения. Ее функция состоит в формировании слуховых ощущений человека в ответ на действие акустических (звуковых) сигналов, которые представляют собой колебания воздуха с разной частотой и силой. Человек слышит звуки, которые находятся в диапазоне от 20 до 20 000 Гц. Известно, что многие животные обладают значительно более широким диапазоном слышимых звуков. Например, дельфины «слышат» звуки частотой до 170 000 Гц. Но слуховая система человека предназначена преимущественно для того, чтобы слышать речь другого человека, и в этом отношении ее совершенство нельзя даже близко сравнивать со слуховыми системами других млекопитающих.

Слуховой анализатор человека состоит из

1) периферического отдела (наружного, среднего и внутреннего уха);

2) слухового нерва;

3) центральных отделов (кохлеарные ядра и ядра верхней оливы, задние бугры четверохолмия, внутреннее коленчатое тело, слуховая область коры головного мозга).

В наружном, среднем и внутреннем ухе происходят необходимые для слухового восприятия подготовительные процессы, смысл которых состоит в оптимизации параметров передаваемых звуковых колебаний при одновременном сохранении характера сигналов. Во внутреннем ухе происходит преобразование энергии звуковых волн в рецепторные потенциалы волосковых клеток .

Наружное ухо включает ушную раковину и наружный слуховой проход. Рельеф ушной раковины играет значительную роль в восприятии звуков. Если, например, этот рельеф уничтожить, залив воском, человек заметно хуже определяет направление источника звука. Наружный слуховой проход человека в среднем имеет длину около 9 см. Есть данные, что трубка такой длины и схожего диаметра имеет резонанс на частоте около 1 кГц, другими словами, звуки этой частоты немного усиливаются. Среднее ухо отделено от наружного барабанной перепонкой, которая имеет вид конуса с вершиной, обращенной в барабанную полость.

Рис. Слуховая сенсорная система

Среднее ухо заполнено воздухом. В нем находятся три косточки: молоточек, наковальня и стремечко , которые последовательно передают колебания барабанной перепонки во внутреннее ухо. Молоточек вплетен рукояткой в барабанную перепонку, другая его сторона соединена с наковальней, передающей колебания стремечку. Благодаря особенностям геометрии слуховых косточек стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Кроме того, поверхность стремечка в 22 раза меньше барабанной перепонки, что во столько же раз усиливает его давление на мембрану овального окна. В результате этого даже слабые звуковые волны, действующие на барабанную перепонку, способны преодолеть сопротивление мембраны овального окна преддверия и привести к колебаниям жидкости в улитке. Благоприятные условия для колебаний барабанной перепонки создает также евстахиева труба , соединяющая среднее ухо с носоглоткой, что служит выравниванию давления в нем с атмосферным.

В стенке, отделяющей среднее ухо от внутреннего, кроме овального, есть еще круглое окно улитки, тоже закрытое мембраной. Колебания жидкости улитки, возникшие у овального окна преддверия и прошедшие по ходам улитки, достигают, не затухая, круглого окна улитки. В его отсутствие из-за несжимаемости жидкости колебания ее были бы невозможны.

В среднем ухе имеются также две маленькие мышцы - одна прикреплена к ручке молоточка, а другая - к стремечку. Сокращение этих мышц предотвращает слишком большие колебания косточек, вызванных громкими звуками. Это так называемый акустический рефлекс . Основной функцией акустического рефлекса является защита улитки от повреждающей стимуляции .

Внутреннее ухо . В пирамиде височной кости имеется сложной формы полость (костный лабиринт) , составными частями которой являются преддверие, улитка и полукружные каналы. Она включает два рецепторных аппарата: вестибулярный и слуховой. Слуховой частью лабиринта является улитка , которая представляет собой спираль из двух с половиной завитков, закрученных вокруг полого костного веретена. Внутри костного лабиринта как в футляре размещен перепончатый лабиринт, по форме соответствующий костному. Вестибулярный аппарат будет рассмотрен в следующей теме.

Опишем слуховой орган. Костный канал улитки разделен двумя мембранами - основной, или базилярной , и рейснеровой или вестибулярной - на три отдельных канала, или лестницы: барабанную, вестибулярную и среднюю (перепончатый улитковый канал) . Каналы внутреннего уха заполнены жидкостями, ионный состав которых в каждом канале специфичен. Средняя лестница заполнена эндолимфой с высоким содержанием ионов калия . Две другие лестницы заполнены перилимфой, состав которой не отличается от тканевой жидкости . Вестибулярная и барабанная лестницы на вершине улитки соединяются через небольшое отверстие - геликотрему, средняя лестница заканчивается слепо.

На базилярной мембране расположен кортиев орган , состоящий из нескольких рядов волосковых рецепторных клеток, поддерживаемых опорным эпителием. Около 3500 волосковых клеток образуют внутренний ряд (внутренние волосковые клетки ), а приблизительно 12-20 тысяч наружных волосковых клеток образуют три, а в области верхушки улитки пять продольных рядов. На обращенной внутрь средней лестницы поверхности волосковых клеток имеются покрытые плазматической мембраной чувствительные волоски - стереоцилии. Волоски соединены с цитоскелетом, их механическая деформация ведет к открытию ионных каналов мембраны и возникновению рецепторного потенциала волосковых клеток. Над кортиевым органом имеется желеобразная покровная (текториальная) мембрана , образованная гликопротеином и коллагеновыми волокнами и прикрепленная к внутренней стенке лабиринта. Верхушки стереоцилии наружных волосковых клеток погружены в вещество покровной пластинки.

Средняя лестница, заполненная эндолимфой, заряжена положительно (до +80 мВ) относительно двух других лестниц. Если учесть, что потенциал покоя отдельных волосковых клеток около - 80 мВ, то в целом разность потенциала (эндокохлеарный потенциал ) на участке средняя лестница - кортиев орган может составить около 160 мВ. Эндокохлеарный потенциал играет важную роль в возбуждении волосковых клеток. Предполагают, что волосковые клетки поляризованы этим потенциалом до критического уровня. В этих условиях минимальные механические воздействия могут вызвать возбуждение рецептора.

Нейрофизиологические процессы в кортиевом органе. Звуковая волна действует на барабанную перепонку, и далее через систему косточек звуковое давление передается на овальное окно и воздействует на перилимфу вестибулярной лестницы. Поскольку жидкость несжимаема, перемещение перилимфы может передаваться через геликотрему в барабанную лестницу, а оттуда через круглое окно - обратно в полость среднего уха. Перилимфа может перемещаться и более коротким путем: рейснерова мембрана изгибается, и через среднюю лестницу давление передается на основную мембрану, затем в барабанную лестницу и через круглое окно в полость среднего уха. Именно в последнем случае раздражаются слуховые рецепторы. Колебания основной мембраны приводят к смещению волосковых клеток относительно покровной мембраны. При деформации стереоцилий волосковых клеток в них возникает рецепторный потенциал, что приводит к выделению медиатора глутамата . Воздействуя на постсинаптическую мембрану афферентного окончания слухового нерва, медиатор вызывает генерацию в нем возбуждающего постсинаптического потенциала и далее генерацию распространяющихся в нервные центры импульсов.

Венгерский ученый Г. Бекеши (1951) предложил «теорию бегущей волны», позволяющую понять, как звуковая волна определенной частоты возбуждает волосковые клетки, находящиеся в определенном месте основной мембраны. Эта теория получила всеобщее признание. Основная мембрана расширяется от основания улитки к ее вершине примерно в 10 раз (у человека от 0,04 до 0,5 мм). Предполагается, что основная мембрана закреплена только по одному краю, остальная ее часть свободно скользит, что соответствует морфологическим данным. Теория Бекеши объясняет механизм анализа звуковой волны следующим образом: высокочастотные колебания проходят по мембране лишь короткое расстояние, а длинные волны распространяются далеко. Тогда начальная часть основной мембраны служит высокочастотным фильтром, а длинные волны проходят весь путь до геликотремы. Максимальные перемещения для разных частот происходят в разных точках основной мембраны: чем ниже тон, тем ближе его максимум к верхушке улитки. Таким образом, высота звука кодируется местом на основной мембране. Такая структурно-функциональная организация рецепторной поверхности основной мембраны. определяется как тонотопическая.

Рис. Тонотопическая схема улитки

Физиология путей и центров слуховой системы. Нейроны 1-го порядка (биполярные нейроны) находятся в спиральном ганглии, который расположен параллельно кортиеву органу и повторяет завитки улитки. Один отросток биполярного нейрона образует синапс на слуховом рецепторе, а другой направляется к головному мозгу, образуя слуховой нерв. Волокна слухового нерва выходят из внутреннего слухового прохода и достигают головного мозга в области так называемого мостомозжечкового угла или латерального угла ромбовидной ямки (это анатомическая граница между продолговатым мозгом и мостом).

Нейроны 2-го порядка образуют в продолговатом мозге комплекс слуховых ядер (вентральное и дорсальное ). В каждом из них имеется тонотопическая организация. Таким образом, частотная проекция кортиева органа в целом упорядоченно повторяется в слуховых ядрах. Аксоны нейронов слуховых ядер поднимаются в лежащие выше структуры слухового анализатора как ипси-, так и контралатерально.

Следующий уровень слуховой системы находится на уровне моста и представлен ядрами верхней оливы (медиальным и латеральным) и ядром трапециевидного тела. На этом уровне уже осуществляется бинауральный (от обоих ушей) анализ звуковых сигналов. Проекции слуховых путей на указанные ядра моста организованы также тонотопически. Большинство нейронов ядер верхней оливы возбуждаются бинаурально . Благодаря бинауральному слуху сенсорная система человека определяет источники звука, находящиеся в стороне от средней линии, поскольку звуковые волны раньше действуют на ближнее к этому источнику ухо. Обнаружены две категории бинауральных нейронов. Одни возбуждаются звуковыми сигналами от обоих ушей (ВВ-тип), другие возбуждаются от одного уха, но тормозятся от другого (ВТ-тип). Существование таких нейронов обеспечивает сравнительный анализ звуковых сигналов, возникающих с левой или правой от человека стороны, что необходимо для его пространственной ориентации. Некоторые нейроны ядер верхней оливы максимально активны при расхождении времени поступления сигналов от правого и левого уха, другие нейроны наиболее сильно реагируют на различную интенсивность сигналов.

Ядро трапециевидного тела получает преимущественно контралатеральную проекцию от комплекса слуховых ядер, и в соответствии с этим нейроны реагируют преимущественно на звуковую стимуляцию контралатерального уха. В этом ядре также обнаруживается тонотопия.

Аксоны клеток слуховых ядер моста идут в составе латеральной петли. Основная часть его волокон (в основном от оливы) переключается в нижнем двухолмии, другая часть идет в таламус и заканчивается на нейронах внутреннего (медиального) коленчатого тела, а также в верхнем двухолмии.

Нижнее двухолмие , расположенное на дорсальной поверхности среднего мозга, является важнейшим центром анализа звуковых сигналов. На этом уровне, по-видимому, заканчивается анализ звуковых сигналов, необходимых для ориентировочных реакций на звук. Аксоны клеток заднего холма направляются в составе его ручки к медиальному коленчатому телу. Однако часть аксонов идет к противоположному холму, образуя интеркаликулярную комиссуру.

Медиальное коленчатое тело , относящееся к таламусу, является последним переключательным ядром слуховой системы на пути к коре. Его нейроны расположены тонотопически и образуют проекцию в слуховую кору. Некоторые нейроны медиального коленчатого тела активируются в ответ на возникновение либо на окончание сигнала, другие реагируют только на частотные или амплитудные его модуляции. Во внутреннем коленчатом теле имеются нейроны, способные постепенно увеличивать активность при неоднократном повторении одного и того же сигнала.

Слуховая кора представляет высший центр слуховой системы и располагается в височной доле. У человека в ее состав входят поля 41, 42 и частично 43. В каждой из зон имеет место тонотопия, т. е полное представительство рецепторного аппарата кортиева органа. Пространственное представительство частот, в слуховых зонах сочетается с колончатой организацией слуховой коры, особенно выраженной в первичной слуховой коре (поле 41). В первичной слуховой коре кортикальные колонки расположены тонотопически для раздельной переработки информации о звуках различной частоты слухового диапазона. Они также содержат нейроны, которые избирательно реагируют на звуки различной продолжительности, на повторяющиеся звуки, на шумы с широким частотным диапазоном и т. п. В слуховой коре происходит объединение информации о высоте тона и его интенсивности, о временных интервалах между отдельными звуками.

Вслед за этапом регистрации и объединения элементарных признаков звукового раздражителя, который осуществляют простые нейроны , в переработку информации включаются комплексные нейроны , избирательно реагирующие только на узкий диапазон частотных или амплитудных модуляций звука. Подобная специализация нейронов позволяет слуховой системе создавать целостные слуховые образы, с характерными только для них сочетаниями элементарных компонентов слухового раздражителя. Такие сочетания могут быть зафиксированы энграммами памяти, что в дальнейшем позволяет сравнивать новые акустические стимулы с прежними. Некоторые комплексные нейроны слуховой коры возбуждаются сильнее всего в ответ на действие звуков человеческой речи.

Частотно-пороговые характеристики нейронов слуховой системы . Как было описано выше, все уровни слуховой системы млекопитающих имеют тонотопический принцип организации. Другая важная характеристика нейронов слуховой системы - способность избирательно реагировать на определенную высоту звука.

У всех животных имеется соответствие между частотным диапазоном издаваемых звуков и аудиограммой, которая характеризует слышимые звуки. Частотную избирательность нейронов слуховой системы описывают частотно-пороговой кривой (ЧПК), отражающей зависимость порога реакции нейрона от частоты тонального стимула. Частота, при которой порог возбуждения данного нейрона минимальный, называется характеристической частотой. ЧПК волокон слухового нерва имеет V-образную форму с одним минимумом, который соответствует характеристической частоте данного нейрона. ЧПК слухового нерва имеет заметно более острую настройку по сравнению с амплитудно-частотными кривыми основной мембран). Предполагают, что в обострении частотно-пороговой кривой участвуют эфферентные влияния уже на уровне слуховых рецепторов (волосковые рецепторы являются вторично-чувствующими и получают эфферентные волокна).

Кодирование интенсивности звука. Сила звука кодируется частотой импульсации и числом возбужденных нейронов. Поэтому считают, что плотность потока импульсации является нейрофизиологическим коррелятом громкости. Увеличение числа возбужденных нейронов при действии все более громких звуков обусловлено тем, что нейроны слуховой системы отличаются друг от друга по порогам реакций. При слабом стимуле в реакцию вовлекается лишь небольшое число наиболее чувствительных нейронов, а при усилении звука в реакцию вовлекается все большее число дополнительных нейронов с более высокими порогами реакций. Кроме того, пороги возбуждения внутренних и наружных рецепторных клеток неодинаковы: возбуждение внутренних волосковых клеток возникает при большей силе звука, поэтому в зависимости от его интенсивности меняется соотношение числа возбужденных внутренних и наружных волосковых клеток.

В центральных отделах слуховой системы обнаружены нейроны, обладающие определенной избирательностью к интенсивности звука, т.е. реагирующие на довольно узкий диапазон интенсивности звука. Нейроны с такой реакцией впервые появляются на уровне слуховых ядер. На более высоких уровнях слуховой системы их количество возрастает. Диапазон выделяемых ими интенсивностей суживается, достигая минимальных значений у нейронов коры. Предполагают, что такая специализация нейронов отражает последовательный анализ интенсивности звука в слуховой системе.

Субъективно воспринимаемая громкость звучания зависит не только от уровня звукового давления, но и от частоты звукового стимула. Чувствительность слуховой системы максимальна для раздражителей с частотами от 500 до 4000 Гц, при других частотах она снижается.

Бинауральный слух . Человек и животные обладают пространственным слухом, т. е. способностью определять положение источника звука в пространстве . Это свойство основано на наличии бинаурального слуха , или слушания двумя ушами. Острота бинаурального слуха у человека очень высока: положение источника звука определяется с точностью до 1 углового градуса. Основой этого служит способность нейронов слуховой системы оценивать интерауральные (межушные) различия времени прихода звука на правое и левое ухо и интенсивности звука на каждом ухе. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и имеет большую силу, чем на другом ухе. Оценка удаленности источника звука от организма связана с ослаблением звука и изменением его тембра.

При раздельной стимуляции правого и левого уха через наушники задержка между звуками уже в 11 мкс или различие в интенсивности двух звуков на 1 дБ приводят к кажущемуся сдвигу локализации источника звука от средней линии в сторону более раннего или более сильного звука. В слуховых центрах есть нейроны с острой настройкой на определенный диапазон интерауральных различий по времени и интенсивности. Найдены также клетки, реагирующие лишь на определенное направление движения источника звука в пространстве.

Тема. Физиология слуха

Вопровы:

    Функции слуховой сенсорной системы: звукопроведение и звуковосприятие.

    Звукопроведение через наружное ухо.

    Звукопроведение в среднем ухе. Понятие об акустическом импедансе.

    Звукопроведение во внутреннем ухе.

    Звуковосприятие. Теории слуха.

1. Функции слуховой сенсорной системы: звукопроведение и звуковосприятие

С точки зрения физиологии, слуховая сенсорная система делится на:

1. звукопроводящий отдел;

2. звуковоспринимающий отдел.

Функции звукопроводящего отдела: доставка звукового колебания к кортиевому органу. Состав: наружное ухо, барабанная перепонка, слуховые косточки, жидкости лабиринта, слуховые мышцы. Звукопроведение может осуществляться 2 путями:

Воздушный путь;

Костный путь.

В норме основной путь звукопроведения – воздушный. Звукопроведение через наружное ухо.

2. Звукопроведение через наружное ухо

Ушная раковина. В звукопроведении ушная раковина не играет важной роли, поэтому люди, рождённые без ушной раковины, слышат нормально. Функции ушной раковины:

Защитная;

Коллектор звуков (собирает звуки и направляет в наружный звуковой проход);

Служит для определения источника звука (анализатор).

Наружный слуховой проход, благодаря изогнутому строению и наличию 2 частей преломляет звуковые волны таким образом, что звуковое давление у барабанной перепонки становится в 3 раза выше, чем у наружного слухового прохода. Основная функция: проведение звуков к барабанной перепонке. Эта функция может нарушаться и влиять на остроту слуха только в случае двухсторонней закупорке.

Барабанная перепонка, благодаря своему анатомическому строению (наличие расслабленной и натянутой частей) обладает минимальной собственной амплитудой колебания. Поэтому все звуки с различной амплитудой она передаёт с одинаковой силой и без искажения. Такой резонанс барабанной перепонки называется универсальным. Барабанная перепонка через цепь слуховых косточек передаёт колебания на овальное окно, а оттуда на внутреннее ухо. Установлено, что барабанная перепонка трансформирует звуковые волны с большой амплитудой и малой силой в звуковые волны с малой амплитудой и большой силой. Такая функция позволяет защищать ухо от повреждения. Установлено, что благодаря системе барабанная перепонка плюс слуховые косточки звуковое давление у овального окна возрастает в 36 раз. Барабанная перепонка позволяет проводить звуки разные по высоте, этому способствуют слуховые мышцы. Большое значение для подвижности барабанной перепонки имеет равенство давления по обе её стороны. При нарушении проходимости евстахиевых труб, давление в барабанной перепонке понижается, что приводит к втягиванию барабанной перепонки в барабанную полость и ограничению её подвижности. Результатом этого является возникающая тугость.

3. Звукопроведение в среднем ухе. Понятие об акустическом импедансе

Мышцы среднего уха - это активные элементы звукопроводящей системы. Их функция:

Поддерживают оптимальный тонус элементов звукопроводящей системы круглосуточно;

По безусловно-рефлекторному механизму проведения чрезмерно сильных звуков;

Аккомодационная, т.е. благодаря мышцам возможно проведение звуков высоких и низких. Установлено, что мышца, натягивающая барабанную перепонку, при расслаблении способствует проведению низких звуков, а напряжение - высоких звуков.

Звукопроведение через систему барабанная перепонка плюс слуховые косточки зависят от ряда факторов - акустический импеданс (их 3).

1-й фактор - масса элементов звукопроводящей системы;

2-й фактор - сила трения между элементами;

3-й фактор - подвижность этих образований.

При увеличении массы элементов проводящей системы нарушается проведение высоких звуков. Это возможно при воспалительных процессах в барабанной полости, при инородных телах, жидкости в среднем ухе.

При уменьшении подвижности элементов проводящей системы нарушается проведение низких звуков. Это бывает при спайках в барабанной полости, при блокаде овального и круглого окна и др.

При увеличении трения страдают проведения как высоких, так и низких звуков.

Т.о. при воспалительных процессах в наружном и среднем ухе происходит увеличение акустического импеданса, которое приводит к развитию «проводниковой тугоухости».

4. Звукопроведение во внутреннем ухе.

Колебание стремечка в овальном окне приводит в колебательное состояние перилимфу. Колебание перилимфы приводит к колебанию основной мембраны, на которой лежит кортиков орган. Основное правило звукопроведения во внутреннем ухе – это синхронное движение стремечка и мембраны круглого окна. Установлено, что при вдавливании стремечка в овальное окно, мембрана круглого должна синхронно вытягиваться в барабанной полости.

Звуковосприятие. В звуковоспринимающий отдел входят:

Волосковые клетки кортикового органа;

Спиральный узел улитки;

Слуховой нерв;

Слуховые ядра продолговатого мозга;

Подкорковые центры слуха;

Внутримозговые, слуховые пути;

Височные доли коры.

5. Звуковосприятие. Теории слуха.

Звуковосприятие - сложный многоуровневый процесс, который начинаются с образованием нервного импульса во внутренних волосковых клетках, и заканчивается формированием слуховых ощущений в височной доли.

1. В улитке происходит первичный анализ звуков;

2. Каждый тон соответствует своему строго определённому участку основной мембраны;

3. На верхнем завитке улитки натянуты длинные струны, которые резонируют на низкие звуки. На нижнем завитке короткие, тугонатянутые струны. Они резонируют на высокие звуки

При звуковосприятии на основной мембране улитки происходят сложные гидродинамические процессы. Возникает так называемая «бегущая волна». Она представляет собой столбы жидкости, которые колеблются с различной амплитудой. Если столб жидкости колеблется с max амплитудой у верхнего завитка - то воспринимает низкие звуки, а у нижнего - высокие.

Улитка работает по принципу микрофона, т.е. энергию звуковых колебаний она превращает в электрические потенциалы. Установлено, что микрофонные токи возникают при смещении волосковых клеток относительно покровной мембраны.

Тема. Патология слухового анализатора

Вопросы:

    Причины стойких нарушений слуха.

    Пороки развития органа слуха.

    Заболевания периферического отдела органа слуха.

    Неврит слухового нерва. Центральное поражение слухового анализатора.

2. Пороки развития органа слуха.

Врождённые аномалии наружного уха. Очень часто сочетаются с врождёнными пороками развития. Встречаются 1:10000 детей. Виды:

а/ Анотия - врождённое отсутствие ушной раковины.

б/ Микротия – недоразвитие ушной раковины (например, нет только мочки)

в/ Деформация ушной раковины (например, обезьяньи уши – оттопырены)

Часто деформация встречается сочетается с врождённым заращением наружного слухового прохода – называется атрезия.

3. Заболевания периферического отдела органа слуха.

Воспалительное заболевание наружного уха:

а/ воспаление какого-либо отдела уха называется отит;

б/ воспаление наружного уха – наружный отит.

Причины: инфекция, грибки, аллергия. Выделяют 2 формы:

Ограниченная (локальная);

Распространённая (диффузная).

Ограниченная. Она протекает в виде ограниченного участка воспаления - фурункул в наружном слуховом проходе. Признаки: боль в ухе усиливается при надавливании на козелок и при жевании. У маленьких детей - повышение температуры. Возможны симптомы интоксикации (слабость, потеря аппетита, тошнота). Опасен осложнениями: переход инфекции на околоушную железу; переход инфекции в среднее ухо, т.е. в барабанную полость.

Распространённая форма. Болезненные ощущения бывают редко, основные жалобы – носильный зуд наружного слухового прохода. Из-за постоянного расчесывания образуются корочки, царапины. Особенно долгим течением отличается аллергический наружный отит – протекает годами (экзема наружного слухового прохода). Для него характерны чередующиеся периоды обострения и ремиссии.

Грибковое поражение наружного слухового прохода кожи называется отомикоз. Характеризуется: повышенной сухостью, шелушением в сочетании с поражением волос и ногтей.

Травмы наружного слухового прохода. Чаще всего наблюдаются при черепно-мозговой травме. Особенно опасны удары по нижней челюсти (подбородок). Они приводят к разрушению костной стенки наружного слухового прохода суставной головкой нижней челюсти. Основной признак – кровотечение из наружного слухового прохода. Кровотечение из ушей или микрокровотечения может говорить о тяжёлой черепно-мозговой травме – переломе основания черепа.

Инородные тела, нарушающие слуховой проход могут быть бобовые, мелкие предметы, насекомые. Признаки: шум в ухе, ощущения помехи. Удалять инородное тело должен медработник, чтобы не повредить барабанную перепонку. Если это насекомое, рекомендуется влить 2-3 капли подогретого масла, оттянуть ушную раковину назад и книзу и нагнуть голову, насекомое должно выйти с маслом. При попадании бобовых рекомендуется закапать в ухо 2-3 капли спирта (водки), предмет сморщивается и удаляется. Если при попадании инородного тела человек испытывает сильную боль - это свидетельствует о глубоком проникновении и задетой барабанной перепонке. Удаляет в этом случае только врач.

Патология барабанной перепонки

Надрывы или полные её разрывы могут возникать при черепно-мозговых травмах, баротравме (резкие колебания давления), при гнойных процессах в среднем ухе. Признаки: резкое снижение остроты слуха, крово- и гноетечение.

Литература

    Нейман Л.В., Богомильский М.Р. Анатомия, физиология и патология органов слуха и речи. М., 2003.

    Турик Г.Г. Анатомия и физиология слуховой сенсорной системы. Мн., 1989, 1990.

В учении о физиологии слуха наиболее важными моментами являются вопросы о том, как достигают звуковые колебания чувствительных клеток слухового аппарата и как происходит процесс восприятия звука.

Устройство органа слуха обеспечивает передачу и восприятие звуковых раздражений. Как уже сказано, всю систему органа слуха принято делить на звукопроводящую и звуковоспринимающую часть. К первой относится наружное и среднее ухо, а также жидкие среды внутреннего уха. Вторая часть представлена нервными образованиями кортиева органа , слуховыми проводниками и центрами.

Звуковые волны, достигнув через слуховой проход барабанной перепонки, приводят ее в движение. Последняя так устроена, что резонирует на определенные колебания воздуха и имеет свой собственный период колебаний (около 800 гц).

Свойство резонанса заключается в том, что резонирующее тело приходит в вынужденное колебание избирательно на некоторые частоты или даже на одну частоту.

При передаче звука через систему косточек энергия звуковых колебаний увеличивается. Рычажная система слуховых косточек, уменьшая размахи колебаний в 2 раза, соответственно усиливает давление на овальное окно. А так как барабанная перепонка примерно в 25 раз больше поверхности овального окна, то сила звука при достижении овального окна увеличена в 2х25 = 50 раз. При передаче с овального окна на жидкости лабиринта амплитуда колебаний уменьшается в 20 раз, и во столько же раз увеличивается давление звуковой волны. Общее увеличение звукового давления в системе среднего уха достигает 1000 раз (2х25х20).

Согласно современным представлениям, физиологическое значение мышц барабанной полости заключается в улучшении передачи звуковых колебаний в лабиринт. При изменении степени напряжения мышц барабанной полости изменяется степень напряжения барабанной перепонки. Расслабление барабанной перепонки улучшает восприятие редких колебаний, а увеличение напряжения ее улучшает восприятие частых колебаний. Перестраиваясь под влиянием звуковых раздражений, мышцы среднего уха улучшают восприятие звуков, различных по частоте и силе.

По своему действию m. tensor tympani и m. stapedius являются антагонистами. При сокращении m. tensor tympani вся система косточек смещается внутрь и стремечко вдавливается в овальное окно. В результате этого повышается внутри лабиринтное давление и ухудшается передача низких и слабых звуков. Сокращение m. stapedius производит обратное перемещение подвижных образований среднего уха. Это ограничивает передачу слишком сильных и высоких звуков, но облегчает передачу низких и слабых.

Полагают, что при действии очень сильных звуков обе мышцы приходят в тетаническое сокращение и этим ослабляют воздействие мощных звуков.

Звуковые колебания, пройдя систему среднего уха, вызывают вдавление пластинки стремени внутрь. Далее колебания передаются по жидким средам лабиринта до кортиева органа. Здесь происходит превращение механической энергии звука в физиологический процесс.

В анатомическом строении кортиева органа, напоминающего устройство рояля, вся основная мембрана на протяжении 272 завитков улитки содержит поперечную исчерченность за счет большого количества соединительнотканных тяжей, натянутых в виде струн. Полагают, что такая деталь кортиева органа обеспечивает возбуждение рецепторов звуками разной частоты.

Высказываются предположения, что колебания основной мембраны, на которой расположен кортиев орган, приводят в соприкосновение волоски чувствительных клеток кортиева органа с покровной мембраной и в процессе этого контакта возникают слуховые импульсы, которые по проводникам передаются в центры слуха, где и возникает слуховое ощущение.

Процесс превращения механической энергии звука в нервную энергию , связанную с возбуждением рецепторных аппаратов, не изучен. Удалось более или менее детально определить электрический компонент этого процесса. Установлено, что при действии адекватного раздражителя в чувствительных окончаниях рецепторных образований возникают местные электроотрицательные потенциалы, которые, достигнув определенной силы, передаются по проводникам к слуховым центрам в виде двухфазных электрических волн. Импульсы, поступающие в кору головного мозга, вызывают возбуждение нервных центров, связанные с электроотрицательным потенциалом. Хотя электрические явления не раскрывают всей полноты физиологических процессов возбуждения, все же они обнаруживают некоторые закономерности его развития.

Купфер дает следующее объяснение возникновению электрического тока в улитке: в результате звукового раздражения поверхностно расположенные коллоидные частицы лабиринтной жидкости заряжаются положительным электричеством, а на волосковых клетках кортиева органа возникает отрицательное электричество. Эта разность потенциалов дает ток, который передается по проводникам.

По мнению В. Ф. Ундрица, механическая энергия давления звука в кортиевом органе переходит в электрическую энергию. До сих пор речь шла об истинных токах действия, возникающих в рецепторном аппарате и передающихся через слуховой нерв к центрам. Уивером и Бреем обнаружены в улитке электрические потенциалы, являющиеся отражением происходящих в ней механических колебаний. Как известно, авторы, накладывая электроды на слуховой нерв кошки, наблюдали электрические потенциалы, соответствующие частоте раздражаемого звука. Вначале было высказано предположение, что обнаруженные ими электрические явления есть истинные нервные токи действия. Дальнейший анализ показал особенности этих потенциалов, не свойственные токам действия. В разделе физиологии слуха необходимо упомянуть о явлениях, наблюдающихся в слуховом анализаторе при действии раздражителей, а именно: адаптация, утомление, маскировка звука.

Как выше сказано, под влиянием раздражителей происходит перестройка функции анализаторов. Последняя представляет собой защитную реакцию организма, когда при чрезмерно интенсивных звуковых раздражениях или продолжительности раздражения вслед за явлением адаптации наступает утомление и возникает снижение чувствительности рецептора; при слабых раздражениях возникает явление сенсибилизации.

Время адаптации при действии звука зависит от частоты тона и продолжительности его воздействия на орган слуха в пределах от 15 до 100 секунд.

Некоторые исследователи считают, что процесс адаптации осуществляется за счет процессов, протекающих в периферическом рецепторном аппарате. Имеются также указания на роль мышечного аппарата среднего уха, благодаря которому орган слуха приспосабливается к восприятию сильных и слабых звуков.

По мнению П. П. Лазарева, адаптация является функцией кортиева органа. В последнем под влиянием звука происходит распад звукочувствительности вещества. После прекращения действия звука происходит восстановление чувствительности за счет другого вещества, находящегося в поддерживающих клетках.

Л. Е. Комендантов, основываясь на личных опытах, пришел к выводу, что адаптационный процесс не определяется силой звукового раздражения, а регулируется процессами, протекающими в высших отделах центральной нервной системы.

Г. В. Гершуни и Г. В. Навяжский связывают адаптационные изменения в органе слуха с изменением деятельности корковых центров. Г. В. Навяжский считает, что мощные звуки вызывают в коре головного мозга торможение, и предлагает с профилактической целью у рабочих шумных предприятий производить «растормаживание» воздействием звуков низкой частоты.

Утомление - понижение работоспособности органа, возникающее в результате длительной работы. Оно выражается в извращении физиологических процессов, которое носит обратимый характер. Иногда при этом возникают не функциональные, а органические изменения и наступает травматическое повреждение органа адекватным раздражителем.

Маскировка одних звуков другими наблюдается при одновременном - действии на орган слуха нескольких звуков разной; частоты. Наибольшим маскирующим действием по отношению к любому звуку обладают звуки, близкие по частоте к обертонам маскирующего тона. Большим маскирующим действием обладают низкие тоны. Явления маскировки выражаются повышением порога слышимости маскируемого тона под действием маскирующего звука.

Удовлетворительно объяснить феномен слуха оказалось необычайно сложной задачей. Человек, представивший теорию, объяснявшую бы восприятие высоты и громкости звука, почти наверняка гарантировал бы себе Нобелевскую премию.

Оригинальный текст (англ.)

Explaining hearing adequately has proven a singularly difficult task. One would almost ensure oneself a Nobel prize by presenting a theory explaining satisfactorily no more than the perception of pitch and loudness.

A. S. Reber, E. S. Reber

Слух - способность биологических организмов воспринимать звуки органами слуха ; специальная функция слухового аппарата , возбуждаемая звуковыми колебаниями окружающей среды, например, воздуха или воды . Одно из биологических дистантных ощущений , называемое также акустическим восприятием . Обеспечивается слуховой сенсорной системой .

Общие сведения

Человек способен слышать звук в пределах от 16 Гц до 20 кГц при передаче колебаний по воздуху, и до 220 кГц при передаче звука по костям черепа. Эти волны имеют важное биологическое значение, например, звуковые волны в диапазоне 300-4000 Гц соответствуют человеческому голосу. Звуки выше 20 000 Гц имеют малое практическое значение, так как быстро тормозятся; колебания ниже 60 Гц воспринимаются благодаря вибрационному чувству. Диапазон частот, которые способен слышать человек, называется слуховым или звуковым диапазоном ; более высокие частоты называются ультразвуком , а более низкие - инфразвуком .

Физиология слуха

В начале 2011 г. в совместной работе двух израильских институтов было показано, что в человеческом мозге выделены специализированные нейроны, позволяющие оценить высоту звука вплоть до 0,1 тона. Животные, кроме летучих мышей, таким приспособлением не обладают, и для разных видов точность ограничена от 1/2 до 1/3 октавы. [ ]

Теории физиологии слуха

На сегодняшний день нет единой достоверной теории, объясняющей все аспекты восприятия звука человеком. Вот некоторые из них:

  • струнная теория Гельмгольца ;
  • теория бегущей волны Бекеши ;
  • микрофонная теория;
  • электромеханическая теория.

Поскольку достоверная теория слуха не разработана, на практике используются психоакустические модели, основанные на данных исследований, проводимых на различных людях [ ] .

Слуховые следы, слияние слуховых ощущений

Опыт показывает, что ощущение, вызываемое коротким звуковым импульсом, длится ещё некоторое время после прекращения звучания. Поэтому два достаточно быстро следующих друг за другом звука дают одиночное слуховое ощущение, являющееся результатом их слияния. Как и при зрительном восприятии, когда отдельные изображения, сменяющие друг друга с частотой ≈ 16 кадров/сек и выше, сливаются в плавно текущее движение, синусоидальный чистый звук получается в результате слияния отдельных колебаний с частотой повторения равной нижнему порогу чувствительности слуха, то есть ≈ 16 Гц. Слияние слуховых ощущений имеет огромное значение для чёткости восприятия звуков и в вопросах консонанса и диссонанса , играющих огромную роль в музыке [ ] .

Проецирование наружу слуховых ощущений

Как бы ни возникали слуховые ощущения, мы относим их обыкновенно во внешний мир, и поэтому причину возбуждения нашего слуха мы всегда ищем в колебаниях, получаемых извне с того или другого расстояния. Эта черта в сфере слуха выражена гораздо слабее, нежели в сфере зрительных ощущений, отличающихся своей объективностью и строгой пространственной локализацией и, вероятно, приобретается также путём долгого опыта и контроля других чувств. При слуховых ощущениях способность к проецированию , объективированию и пространственной локализации не может достигнуть столь высоких степеней, как при зрительных ощущениях. Виной этому такие особенности строения слухового аппарата, как, например, недостаток мышечных механизмов, лишающий его возможности точных пространственных определений. Известно то огромное значение, какое имеет мышечное чувство во всех пространственных определениях.

Суждения о расстоянии и направлении звуков

Наши суждения о расстоянии, на котором издаются звуки, являются весьма неточными, в особенности если глаза человека закрыты и он не видит источника звуков и окружающие предметы, по которым можно судить об «акустике окружения» на основании жизненного опыта, либо акустика окружения нетипична: так, например, в акустической безэховой камере голос человека, находящегося всего в метре от слушающего, кажется последнему в разы и даже десятки раз более удалённым. Также знакомые звуки представляются нам тем более близкими, чем они громче, и наоборот. Опыт показывает, что мы менее ошибаемся в определении расстояния шумов, нежели музыкальных тонов. Способность суждения о направлении звуков у человека весьма ограничена: не имея подвижных и удобных для собирания звуков ушных раковин , он в случаях сомнений прибегает к движениям головы и ставит её в положение, при котором звуки различаются наилучшим образом, то есть звук локализируется человеком в том направлении, с которого он слышится сильнее и «яснее».

Известно три механизма, при помощи которых можно различить направление звука:

  • Разница в средней амплитуде (исторически первый обнаруженный принцип): для частот выше 1 кГц, то есть таких, что длина звуковой волны меньше, чем размер головы слушающего, звук, достигающий ближнего уха, имеет бо́льшую интенсивность.
  • Разница в фазе: ветвистые нейроны способны различать фазовый сдвиг до 10-15 градусов между приходом звуковых волн в правое и левое ухо для частот в примерном диапазоне от 1 до 4 кГц (что соответствует точности в определении времени прихода в 10 мкс).
  • Разница в спектре: складки ушной раковины , голова и даже плечи вносят в воспринимаемый звук небольшие частотные искажения, по-разному поглощая различные гармоники, что интерпретируется мозгом как дополнительная информация о горизонтальной и вертикальной локализации звука.

Возможность мозга воспринимать описанные различия в звуке, слышимым правым и левым ухом, привело к созданию технологии бинауральной записи .

Описанные механизмы не работают в воде: определение направления по разности громкостей и спектра невозможно, так как звук из воды проходит практически без потерь напрямую в голову, и значит в оба уха, из-за чего громкость и спектр звука в обоих ушах при любом расположении источника звука с высокой точностью одинаковы; определение направления источника звука по фазовому сдвигу невозможно, так как из-за гораздо более высокой в воде скорости звука длина волны возрастает в несколько раз, а значит, фазовый сдвиг многократно уменьшается.

Из описания приведённых механизмов понятна и причина невозможности определения расположения источников низкочастотного звука.

Исследование слуха

Слух проверяют с помощью специального устройства или компьютерной программы под названием «аудиометр ».

Возможно определение ведущего уха с помощью специальных тестов. Например, в наушники подаются разные аудиосигналы (слова), а человек их фиксирует на бумаге. С какого уха больше правильно распознанных слов, то и ведущее [ ] .

Определяют и частотные характеристики слуха, что важно при постановке речи у слабослышащих детей.

Норма

Восприятие частотного диапазона 16 Гц − 20 кГц с возрастом изменяется - высокие частоты перестают восприниматься. Уменьшение диапазона слышимых частот связано с изменениями во внутреннем ухе (улитке) и развитием с возрастом нейросенсорной тугоухости .

Порог слышимости

Порог слышимости - минимальное звуковое давление, при котором звук данной частоты воспринимается ухом человека. Величину порога слышимости выражают в децибелах . За нулевой уровень принято звуковое давление 2⋅10 −5 Па на частоте 1 кГц. Порог слышимости у конкретного человека зависит от индивидуальных свойств, возраста, физиологического состояния.

Порог болевого ощущения

Порог болевого ощущения слуховой - величина звукового давления, при котором в слуховом органе возникают боли (что связано, в частности, с достижением предела растяжимости барабанной перепонки). Превышение данного порога приводит к акустической травме. Болевое ощущение определяет границу динамического диапазона слышимости человека, который в среднем составляет 140 дБ для тонального сигнала и 120 дБ для шумов со сплошным спектром.

Причины ухудшения слуха

Учеными было установлено, что громкие звуки повреждают слух. Например, музыка на концертах или шум станков на производстве. Такое нарушение выражается в том, что человек в шумной обстановке часто ощущает гул в ушах и не различает речь. Изучением этого феномена занимается Чарльз Либерман из Гарварда. Данное явление называют «скрытой потерей слуха».

Звук попадает в уши, усиливается и преобразуется в электрические сигналы посредством волосковых клеток . Потеря этих клеток вызывает ухудшение слуха. Она может быть связана с громким шумом, приемом определённых медикаментов или с возрастом. Данное изменение выявляет стандартный тест, аудиограмма. Однако, Либерман отмечает, что есть и иные причины потери слуха, не связанные с уничтожением волосковых клеток , так как многие люди с хорошими показателями аудиограммы жалуются на ухудшение слуха. Проведенные исследования показали, что потеря синапсов (связей между волосковыми клетками) более, чем на половину является той самой причиной ухудшения слуха, которая не отображается на аудиограмме. На данный момент ещё не изобретено такого лекарства, которое могло бы избавить от данной проблемы, поэтому ученые советуют избегать мест с повышенным уровнем шума.

Патология

См. также

Для слухового анализатора адекватным раздражителем является звук. Основными характеристиками каждого звукового тона являются частота и амплитуда звуковой волны. Чем больше частота, тем звук выше по тону. Сила же звука, выражаемая его громкостью, пропорциональна амплитуде и измеряется в децибелах (дБ). Человеческое ухо способно воспринимать звук в диапазоне от 20 Гц до 20 000 Гц (дети – до 32 000 Гц). Наибольшей возбудимостью ухо обладает к звукам частотой от 1000 до 4000 Гц. Ниже 1000 и выше 4000 Гц возбудимость уха сильно снижается.

Звук силой до 30 дБ слышен очень слабо, от 30 до 50 дБ соответствует шёпоту человека, от 50 до 65 дБ – обыкновенной речи, от 65 до 100 дБ – сильному шуму, 120 дБ – «болевой порог», а 140 дБ – вызывает повреждения среднего (разрыв барабанной перепонки) и внутреннего (разрушение кортиева органа) уха.

Порог слышимости речи у детей 6-9 лет – 17-24 дБА, у взрослых – 7-10 дБА. При утрате способности воспринимать звуки от 30 до 70 дБ наблюдаются затруднения при разговоре, ниже 30 дБ – констатируют почти полную глухоту.

Различные возможности слуха оцениваются дифференциальными порогами (ДП), т. е. улавливанием минимально изменяемых какого-либо из параметров звука, например, его интенсивности или частоты. У человека дифференциальный порог по интенсивности равен 0,3-0,7 дБ, по частоте 2-8 Гц.

Кость хорошо проводит звук. При некоторых формах глухоты, когда слуховой нерв не поврежден, звук проходит через кости. Глухие иногда могут танцевать, слушая музыку через пол, воспринимая её ритм ногами. Бетховен слушал игру на рояле через трость, которой он опирался на рояль, а другой конец держал в зубах. При костно-тканевом проведении, можно слышать ультразвуки – звуки с частотой свыше 50 000 Гц.

При длительном действии на ухо сильных звуков (2-3 минуты) острота слуха понижается, а в тишине – восстанавливается; для этого достаточно 10-15 секунд (слуховая адаптация ).

Временное снижение слуховой чувствительности с более длительным периодом восстановления нормальной остроты слуха, также возникающее при длительном воздействии интенсивных звуков, но восстанавливающееся после кратковременного отдыха, носит название слухового утомления . Слуховое утомление, в основе которого лежит временное охранительное торможение в коре головного мозга, – это физиологическое явление, носящее защитный характер против патологического истощения нервных центров. Не восстанавливающееся после кратковременного отдыха слуховое утомление, в основе которого лежит стойкое запредельного торможение в структурах головного мозга, носит название слухового переутомления , требующего для его снятия проведения целого ряда специальных лечебно-оздоровительных мероприятий.



Физиология звукового восприятия. Под влиянием звуковых волн в мембранах и жидкости улитки происходят сложные перемещения. Изучение их затруднено как малой величиной колебаний, так и слишком малым размером улитки и глубиной ее расположения в плотной капсуле лабиринта. Еще труднее выявить характер физиологических процессов, происходящих при трансформации механической энергии в нервное возбуждение в рецепторе, а также в нервных проводниках и центрах. В связи с этим существует лишь ряд гипотез (предположений), объясняющих процессы звуковосприятия.

Самая ранняя из них – теория Гельмгольца (1863 г.). По этой теории, в улитке возникают явления механического резонанса, в результате которого сложные звуки разлагаются на простые. Тон любой частоты имеет свой ограниченный участок на основной мембране и раздражает строго определенные нервные волокна: низкие звуки вызывают колебание у верхушки улитки, а высокие – у её основания.

Согласно новейшей гидродинамической теории Бекеши и Флетчера, которая в настоящее время считается основной, действующим началом слухового восприятия является не частота, а амплитуда звука. Амплитудному максимуму каждой частоты в диапазоне слышимости соответствует специфический участок базилярной мембраны. Под влиянием звуковых амплитуд в лимфе обеих лестниц улитки происходят сложные динамические процессы и деформации мембран, при этом место максимальной деформации соответствует пространственному расположению звуков на основной мембране, где наблюдались вихревые движения лимфы. Сенсорные клетки сильнее всего возбуждаются там, где амплитуда колебаний максимальна, поэтому разные частоты действуют на различные клетки.



В любом случае, приводимые в колебание волосковые клетки, касаются кроющей мембраны и изменяют свою форму, что приводит к возникновению в них потенциала возбуждения. Возникающее в определенных группах рецепторных клеток возбуждение, в виде нервных импульсов распространяется по волокнам слухового нерва в ядра ствола мозга, подкорковые центры, расположенные в среднем мозге, где информация, содержащаяся в звуковом стимуле, многократно перекодируется по мере прохождения через различные уровни слухового тракта. В ходе этого процесса нейроны того или иного типа выделяют «свои» свойства стимула, что обеспечивает довольно специфичную активацию нейронов высших уровней. По достижении слуховой зоны коры, локализующейся в височных долях (поля 41 – первичная слуховая кора и 42 – вторичная, ассоциативная слуховая кора по Бродману), эта многократно перекодированная информация преобразуется в слуховое ощущение. При этом в результате перекреста проводящих путей, звуковой сигнал из правого и левого уха попадает одновременно в оба полушария головного мозга.

Возрастные особенности становления слуховой чувствительности. Развитие периферических и подкорковых отделов слухового анализатора в основном заканчивается к моменту рождения, и слуховой анализатор начинает функционировать уже с первых часов жизни ребёнка. Первая реакция на звук проявляется у ребёнка расширением зрачков, задержкой дыхания, некоторыми движениями. Затем ребёнок начинает прислушиваться к голосу взрослых и реагировать на него, что связано уже с достаточной степенью развития корковых отделов анализатора, хотя завершение их развития происходит на довольно поздних этапах онтогенеза. Во втором полугодии ребёнок воспринимает определённые звукосочетания и связывает их с определёнными предметами или действиями. В возрасте 7–9 месяцев малыш начинает подражать звукам речи окружающих, а к году у него появляются первые слова.

У новорожденных восприятие высоты и громкости звука снижено, но уже к 6–7 мес. звуковое восприятие достигает нормы взрослого, хотя функциональное развитие слухового анализатора, связанное с выработкой тонких дифференцировок на слуховые раздражители, продолжается до 6–7 лет. Наибольшая острота слуха свойственна подросткам и юношам (14–19 лет), затем постепенно снижается.

2.3. Патология слухового анализатора

Нарушения слуха – это незаметное препятствие, которое может иметь далеко идущие психологические и социальные последствия. Больные со сниженным слухом или страдающие полной глухотой сталкиваются со значительными трудностями. Отрезанные от словесной коммуникации, они во многом утрачивают связь с близкими и другими окружающими их людьми и существенно изменяют свое поведение. С задачами, за решение которых отвечает слух, другие сенсорные каналы справляются крайне неудовлетворительно, поэтому слух – это важнейшее из человеческих чувств, и его потерю нельзя недооценивать. Он требуется не только для понимания речи окружающих, но и для умения говорить самому. Глухие от рождения дети не научаются говорить, так как лишены слуховых стимулов, поэтому глухота, возникающая до приобретения речи, относится к особенно серьезным проблемам. Невозможность говорить приводит к всеобщему отставанию в развитии, уменьшая возможности обучаться. Поэтому тугоухие от рождения дети, должны начинать пользоваться слуховыми аппаратами до 18-месячного возраста.

Дети с нарушением слуха делятся на три категории (классификация):

Ø глухие это дети с тотальным выпадением слуха, среди которых выделяются глухие без речи (рано оглохшие) и глухие, сохранившие речь. К рано оглохшим детям относятся и дети с двусторонним стойким нарушением слуха. У детей с врожденным или приобретенным до речевого развития нарушением слуха, в последствии глухота компенсируется другими анализаторами (наглядно-зрительными образами, вместо словесно-логических). Основная форма общения – мимика и жесты.

У детей, сохранивших речь, из-за отсутствия слухового контроля, она нечёткая, смазанная. У детей часто возникают нарушения голоса (неадекватная высота голоса, фальцет, гнусавость, резкость, неестественность тембра), так же встречаются нарушения речевого дыхания. В психическом плане дети неустойчивы, заторможены, с большими комплексами.

Ø позднооглохшие дети с потерей слуха, но с относительно сохранной речью. Они обучаются в специальных школах по специальным программам с соответствующими ТСО для нормализации остаточного слуха (прибор для вибрации, прибор механической защиты речи). Устная речь воспринимается на слух с искажениями, поэтому возникают трудности в обучении, в подборе восприятия речи, в выражении и проговаривании речи. Эти дети замкнуты, раздражительны, владеют речью с нарушениями лексического и грамматического строя речи.

Ø слабослышащие – эти дети с частичной слуховой недостаточностью, затрудняющей слуховое развитие, но сохранившие возможность самостоятельно накоплять речевой запас.

По глубине нарушения слуха выделяют 4 степени:

легкая восприятие шепота на расстоянии 3-6 м, разговорной речи 6-8 м;

умеренная – восприятие шепота – 1-3 м, разговорной речи 4-6 м;

значительная – восприятие шепота – 1 м, разговорной речи 2-4 м;

тяжелая – восприятие шепота – не бол. 5-10 см от уха, разговорной речи – не более 2 метров.

Снижение остроты слуха в силу каких-либо патологических процессов в любом из отделов слухового анализатора (гипоакузия ) или потеря слуха – это наиболее частое следствие патологии слухового анализатора. Более редкими формами нарушения слуха являются гиперакузия , когдадаже обычная речь вызывает болевые или неприятные звукоощущения (может наблюдаться при поражении лицевого нерва); двоение звука (диплакузия ), возникающее при неодинаковом воспроизведении левым и правым ухом высоты звукового сигнала; паракузия – улучшение остроты слуха в шумной обстановке, характерная для отосклероза.

Гипоакузия условно может быть связана с тремя категориями причин:

1. Нарушения проведения звука. Ослабление слуха вследствие механического препятствия для прохождения звуковых волн может быть вызвано накоплением в наружном слуховом проходе ушной серы . Она выделяется железами наружного слухового прохода и выполняет защитную функцию, но, скапливаясь в наружном слуховом проходе, образует серную пробку, удаление которой полностью восстанавливает слух. Сходный эффект даёт и присутствие инородных тел в слуховом проходе, которое особенно часто отмечается у детей. Следует отметить, что основную опасность представляет не столько присутствие инородного тела в ухе, сколько неудачные попытки его удаления.

Нарушение слуха может быть вызвано разрывом барабанной перепонки при воздействии очень сильных шумов или звуков, например, взрывной волны. В таких случаях рекомендуется открывать рот к моменту, когда произойдет взрыв. Частой причиной перфорации барабанной перепонки является ковыряние в ухе шпильками, спичками и другими предметами, а также неумелые попытки удаления инородных тел из уха. Нарушение целости барабанной перепонки при сохранности остальных отделов слухового органа, сравнительно мало отражается на слуховой функции (страдает лишь восприятие низких звуков). Главную опасность несут последующие инфицирование и развитие гнойного воспаления в барабанной полости.

Потеря эластичности барабанной перепонки при воздействии производственных шумов приводит к постепенной потере остроты слуха (профессиональной тугоухости).

Воспаление тимпанально-косточкового аппарата снижает его способности по усилению звука и даже при здоровом внутреннем ухе слух ухудшается.

Воспаления среднего уха представляют опасность для слухового восприятия своими последствиями (осложнениями), которые наиболее часто отмечаются при хроническом характере воспаления (хронический средний отит). Например, вследствие образования спаек между стенками барабанной полости и перепонкой, подвижность последней снижается, в результате чего возникает ухудшение слуха, шум в ушах. Очень частым осложнением как хронического, так и острого гнойного отита, является прободение барабанной перепонки. Но главная опасность таится в возможном переходе воспаления на внутреннее ухо (лабиринтит), на мозговые оболочки (менингит, абсцесс мозга), либо в возникновении общего заражения крови (сепсиса).

Во многих случаях даже при правильном и своевременном лечении, особенно хронического среднего отита, восстановления слуховой функции в полном объёме не достигается, в силу возникающих рубцовых изменений барабанной перепонки, сочленений слуховых косточек. При поражениях среднего уха, как правило, возникает стойкое понижение слуха, но полной глухоты не наступает, поскольку сохраняется костная проводимость. Полная глухота после воспаления среднего уха может развиться лишь в результате перехода гнойного процесса из среднего уха во внутреннее.

Вторичный (секреторный) отит является следствием перекрытия слуховой трубы вследствие воспалительных процессов в носоглотке или разрастания аденоидов. Находящийся в среднем ухе воздух частично поглощается его слизистой оболочкой и создаётся отрицательное давление воздуха, с одной стороны, ограничивающее подвижность барабанной перепонки (следствие – ухудшение слуха), а с другой стороны – способствующее пропотеванию плазмы крови из сосудов в барабанную полость. Последующая организация плазменного сгустка может приводить к развитию спаечного процесса в барабанной полости.

Особое место занимает отосклероз, заключающийся в разрастании губчатой ткани, чаще всего в области ниши овального окна, в результате чего стремечко оказывается замурованным в овальном окне и теряет свою подвижность. Иногда это разрастание может распространяться и на лабиринт внутреннего уха, что приводит к нарушению не только функции звукопроведения, но и звуковосприятия. Проявляется, как правило, в молодом возрасте (15-16 лет) прогрессирующим падением слуха и шумом в ушах, приводя к резкой тугоухости или даже полной глухоте.

Поскольку поражения среднего уха касаются только звукопроводящих образований и не затрагивают звуковоспринимающие нейроэпителиальные структуры, вызываемая ими тугоухость называется кондуктивной. Кондуктивная тугоухость (кроме профессиональной) у большинства больных достаточно успешно корригируется микрохирургическим и аппаратным путем.

2. Нарушения восприятия звука. В этом случае повреждены волосковые клетки кортиева органа, так что нарушено либо преобразование сигнала, либо выделение нейромедиатора. В результате страдает передача информации из улитки в ЦНС и развивается сенсорная тугоухость .

Причина – воздействие внешних или внутренних неблагоприятных факторов: инфекционные заболевания детского возраста (корь, скарлатина, эпидемический цереброспинальный менингит, эпидемический паротит), общие инфекции (грипп, сыпной и возвратный тиф, сифилис); лекарственная (хинин, некоторые антибиотики), бытовая (окись углерода, светильный газ) и промышленная (свинец, ртуть, марганец) интоксикации; травмы; интенсивное воздействие производственного шума, вибрации; нарушение кровоснабжения внутреннего уха; атеросклероз, возрастные изменения.

В силу своего глубокого расположения в костном лабиринте, воспаления внутреннего уха (лабиринтиты), как правило, носят характер осложнений воспалительных процессов среднего уха или мозговых оболочек, некоторых детских инфекций (кори, скарлатины, эпидемического паротита). Гнойные диффузные лабиринтиты в подавляющем большинстве случае заканчиваются полной глухотой, вследствие гнойного расплавления кортиева органа. Результатом ограниченного гнойного лабиринтита является частичная потеря слуха на те или иные тоны, в зависимости от места поражения в улитке.

В некоторых случаях при инфекционных заболеваниях в лабиринт проникают не сами микробы, а их токсины. Развивающийся в этих случаях сухой лабиринтит протекает без гнойного воспаления и обычно не ведёт к гибели нервных элементов внутреннего уха. Поэтому полной глухоты не наступает, но нередко наблюдается значительное понижение слуха вследствие образования рубцов и сращений во внутреннем ухе.

Нарушения слуха возникают вследствие повышения давления эндолимфы на чувствительные клетки внутреннего уха, которое наблюдается при болезни Меньера. Несмотря на то, что повышение давления при этом имеет преходящий характер, снижение слуха прогрессирует не только во время обострений болезни, но и в межприступный период.

3. Ретрокохлеарные нарушения – внутреннее и среднее ухо здоровы, но нарушены либо передача нервных импульсов по слуховому нерву к слуховой зоне коры больших полушарий, либо сама деятельность корковых центров (например, при опухоли головного мозга).

Поражения проводникового отдела слухового анализатора могут возникать на любом его отрезке. Наиболее частыми являются невриты слухового нерва , под которыми понимается воспалительное поражение не только ствола слухового нерва, но и поражения нервных клеток, входящих в состав спирального нервного узла, находящегося в улитке.

Нервная ткань очень чувствительна к любым токсическим воздействиям. Поэтому очень частым следствием воздействия некоторых лекарственных (хинин, мышьяк, стрептомицин, салициловые препараты, антибиотики группы аминогликозидов и мочегонные средства) и токсических (свинец, ртуть, никотин, алкоголь, окись углерода и др.) веществ, бактерийных токсинов является гибель нервных ганглиев спирального узла, которая приводит к вторичной нисходящей дегенерации волосковых клеток кортиева органа и восходящей дегенерации нервных волокон слухового нерва, с формированием полного или частичного выпадения слуховой функции. Причём, хинин и мышьяк имеют такое же сродство к нервным элементам слухового органа, как метиловый (древесный) спирт – к нервным окончаниям в глазу. Снижение остроты слуха в таких случаях может достигать значительной выраженности, вплоть до глухоты, а лечение, как правило, не эффективно. В этих случаях реабилитация больных происходит с помощью тренировки и использования слуховых аппаратов.

Заболевания ствола слухового нерва возникают вследствие перехода воспалительных процессов с мозговых оболочек на оболочку нерва при менингите.

Проводящие слуховые пути в головном мозгу могут страдать при врождённых аномалиях и при различных заболеваниях и повреждениях мозга. Это, прежде всего, кровоизлияния, опухоли, воспалительные процессы мозга (энцефалиты) при менингите, сифилисе и др. Во всех случаях такие поражения обычно не бывают изолированными, а сопровождаются и другими мозговыми расстройствами.

Если процесс развивается в одной половине мозга и захватывает слуховые пути до их перекреста – полностью или частично нарушается слух на соответствующее ухо; выше перекреста – наступает двустороннее понижение слуха, более выраженное на стороне, противоположной поражению, но полной потери слуха не наступает, т. к. часть импульсов поступает по сохранившимся проводящим путям противоположной стороны.

Повреждение височных долей мозга, где располагается слуховая кора, может происходить при кровоизлияниях в мозг, опухолях, энцефалитах. Затрудняется понимание речи, пространственная локализация источника звука и идентификация его временных характеристик. Однако подобные поражения не влияют на способность различать частоту и силу звука. Односторонние поражения коры ведут к понижению слуха на оба уха, больше – на противоположной стороне. Двусторонних поражений проводящих путей и центрального конца слухового анализатора практически не отмечается.

Дефекты органов слуха :

1.Аллозия врождённое полное отсутствие или недоразвитие (например, отсутствие кортиева органа) внутреннего уха.

2. Атрезия – заращение наружного слухового прохода; при врождённом характере обычно сочетается с недоразвитием ушной раковины или полным её отсутствием. Приобретённая атрезия может быть следствием длительного воспаления кожи ушного прохода (при хроническом гноетечении из уха), либо рубцовых изменений после травм. Во всех случаях к значительному и стойкому понижению слуха ведёт лишь полное заращение слухового прохода. При неполных заращениях, когда в слуховом проходе имеется хотя бы минимальная щель, слух обычно не страдает.

3. Оттопыренные ушные раковины, сочетающиеся с увеличением их размера – макротия, или маленькими размерами ушной раковины микротия . Ввидутого, что функциональное значение ушной раковины невелико, все её заболевания, повреждения и аномалии развития, вплоть до полного отсутствия, не влекут за собой существенного нарушения слуха и имеют в основном лишь косметическое значение.

4. Врожденные свищи незаращение жаберной щели, открытой на передней поверхности ушной раковины, несколько выше козелка. Отверстие малозаметно и из него выделяется тягучая, прозрачная жидкость желтого цвета.

5. Врождённые аномалии среднего уха сопутствуют нарушениям развития наружного и внутреннего уха (заполнение барабанной полости костной тканью, отсутствие слуховых косточек, сращивание их).

Причина врождённых дефектов уха чаще всего кроется в нарушениях хода развития зародыша. К таким факторам относится патологическое воздействие на зародыш со стороны организма матери (интоксикации, инфицирование, травмирование плода). Известную роль играет и наследственное предрасположение.

От врождённых дефектов развития следует отличать повреждения органа слуха, возникающие во время родового акта. Например, даже травмы внутреннего уха могут быть следствием сдавления головки плода узкими родовыми путями или последствиями наложения акушерских щипцов при патологических родах.

Врожденная глухота или тугоухость – это либо наследственное нарушение эмбриологического развития периферической части слухового анализатора или отдельных его элементов (наружное, среднее ухо, костная капсула лабиринта, кортиев орган); либо нарушения слуха, связанные с вирусными инфекциями, перенесенными беременной в ранние сроки (до 3-х месяцев) беременности (корь, грипп, паротит); либо последствия поступления в организм беременных токсичных веществ (хинин, салициловые препараты, алкоголь). Врожденное снижение слуха обнаруживается уже в первый год жизни ребенка: он не переходит от «гуления» к произнесению слогов или простых слов, а, напротив, постепенно полностью замолкает. Кроме того, самое позднее, к середине второго года нормальный ребенок научается поворачиваться по направлению к звуковому стимулу.

Роль наследственного (генетического) фактора в качестве причины врождённых нарушений слуха в прежние годы несколько преувеличивалась. Однако этот фактор, несомненно, имеет некоторое значение, т. к. известно, что у глухих родителей дети с врождённым дефектом слуха рождаются чаще, чем у слышащих.

Субъективные реакции на шум. Помимо звуковой травмы, т. е. объективно наблюдаемого повреждения слуха, длительное пребывание в среде, «загрязненной» избыточными звуками («звуковой шум»), ведет к повышению раздражительности, ухудшению сна, головным болям, повышению артериального давления. Дискомфорт, вызываемый шумом, в значительной степени зависит от психологического отношения субъекта к источнику звука. Например, жильца дома может раздражать игра на пианино двумя этажами выше, хотя уровень громкости объективно невелик и у других жильцов жалоб не возникает.