>>> Гормональная система кишечника

Хорошо ли Вы знакомы с функциями пищеварительной системы? Для человека, интересующегося своим здоровьем эти знания просто необходимы. О таком важнейшем и незаслуженно забытом органе, как тонкий кишечник, будет рассказано в этой статье.

Оказывается, роль тонкого кишечника намного более серьезна, чем думает большинство людей. Кроме того, что в тонком кишечнике проходят многие пищеварительные процессы, этот орган еще и вырабатывает гормоны .

Что это за гормоны? Это гормоны, которые помогают не только обработать пищевые массы органами пищеварения, но и усвоиться тем веществам, которые высвобождаются вследствие переваривания пищи. Теперь подробнее о каждом гормоне.

  1. Секретин . Этот гормон служит для активизации выработки панкреатического сока. Для того чтобы процесс шел, необходимо присутствие водорода. Этот гормон играет важную роль в выработке инсулина .
  2. Холецистокинин . Этот гормон воздействует на поджелудочную железу, принуждая ее вырабатывать больше ферментов. Кроме этого, он оказывает влияние и на желчный пузырь, а также продвижение пищи по кишечнику.
  3. Гастрон . Этот гормон способствует выработке желудком соляной кислоты. Кроме этого, он участвует в работе двенадцатиперстной кишки. Под его влиянием химус задерживается в желудке и кишечнике.
  4. Глюкагон – этот гормон помогает работе печени . Под его действием улучается снабжение кислородом клеток этого важнейшего органа.
  5. Кохерин – гормон, который воздействует на основные функции кишечника.
  6. Вилликинин – это гормон, под влиянием которого работают ворсинки тонкого кишечника.
  7. Энтерокинин – это гормон, который активизирует выработку различных фракций желудочного сока.
  8. Дуокринин – под воздействием этого гормона в двенадцатиперстной кишке вырабатываются определенные вещества, необходимые для пищеварения.
  9. Энтерогастрон – этот гормон необходим для переваривания жирных продуктов. Благодаря энтерогастрону органы пищеварения справляются с этой задачей.
  10. Вагогастрон в случае необходимости подавляет выработку желудочного сока.
  11. Сиалогастрон это гормон, который связан с процессом слюноотделения, он также подавляюще действует на выработку соляной кислоты.Бульбогастрон же подавляет выработку конкретно соляной кислоты.
  12. Энтерооксинтин – под влиянием этого вещества активизируется функция оксинтиновых тканей кишечника.
  13. Специальный гормон , который влияет на выработку гормона роста.
  14. ГИП – вещество, принимающее активное участие в работе клеток, продуцирующих кислоту.
  15. ВИП – гормон, который обладает действием на переработку пищи, состояние сосудов и сердца, работу бронхов и легких, а также на кроветворение и обмен веществ.
  16. Мотилин – это гормон, под влиянием которого желудок работает интенсивнее.
  17. Химоденин – под влиянием этого гормона поджелудочная железа активнее продуцирует ферменты.
  18. Бомбезин – вещество, которое способствует выработке кислоты, а также стимулирует выброс желчи.
  19. Субстанция П – это вещество с загадочным названием способствует расширению кровеносных сосудов, вследствие чего артериальное давление падает.
  20. Антелон – вещество, которое предохраняет слизистую оболочку стенок желудка и кишечника от повреждений.

Но это еще не все, оказывается, в органах пищеварения есть ткани, которые дублируют выработку гормонов, продуцируемых гипоталамусом и гипофизом . Но и это еще не все. А вот гипоталамус и гипофиз вырабатывают гормон, характерный для органов пищеварение и называемый гастрон. Такие совпадения говорят о схожести этих двух гормональных систем.

И напоследок: в пищеварительной системе вырабатываются гормоны, которые обладают способностью снимать боль. Это энкефалины и эндорфины . Ранее считалось, что эти гормоны вырабатываются только в клетках головного мозга.
Нормализации выработки гормонов пищеварительными органами способствует употребление БАД (биологически активных добавок), созданных на основе натурального сырья.

Читать еще:
















Из тканей желудочно-кишечного тракта выделено более 12 пептидов, обладающих специфическим действием (табл. 52.1). Пептиды, относящиеся к системе желудочно-кишечных гормонов, во многих отношениях отличаются от пептидов более типичных гормональных систем. Некоторые из этих различий рассматриваются ниже.

А. Разнообразие эффектов. Многие желудочно-кишечные пептиды удовлетворяют классическому определению «гормон» (см. гл. 43). К ним относятся гастрин, секретин, желудочный ингибиторный полипептид (ЖИП) и, возможно, холецистокинин (ХЦК), мотилин, панкреатический полипетид (ПП) и энтеро-глюкагон (табл. 52.1). Другие желудочно-кишечные пептиды, вероятно, обладают паракринным эффектом (см. гл. 43) или действуют нейроэндокринным путем (как локальные нейромедиаторы или нейромодуляторы).

Таблица 52.1. Желудочно-кишечные гормоны. (Slightly mo-difled and reproduced, with permission, from Deveney C. W., Way L. W. Regulatory peptides of the gut. In: Basic Clinical Endocrinology, 2nd ed. Greenspan F. S., Forsham P. H. (Editors). Appleton and Lange, 1986.)

Это предположение основано на том, что, хотя указанные вещества обнаруживаются в высоких концентрациях в нейронах и в различных клетках желудочно-кишечного тракта, в крови они в нормальных условиях либо отсутствуют, либо имеют такой короткий период полужизни, который исключает биологическую активность. К пептидам с нейроэндокринным действием относят вазоактивный интестинальный пептид (ВИП), соматостатин, вещество Р, энкефалины, бомбезиноподобные пептиды и нейротензин (табл. 52.1). Многие из этих веществ, по-видимому, обладают in vivo паракринным действием, поскольку при добавлении к тканевым или органным культурам оказывают влияние на различные клетки.

Б. Локализация клеток, продуцирующих желудочно-кишечные гормоны. Отличительная особенность желудочно-кишечной эндокринной системы состоит в том, что ее клетки рассеяны по желудочно-кишечному тракту, а не собраны в отдельных органах, как это характерно для более типичных эндокринных желез. Распределение желудочно-кишечных гормонов показано в табл. 52.2, в которой также приведены названия клеток.

Поскольку многие желудочно-кишечные пептиды найдены в нервах тканей желудочно-кишечного тракта, неудивительно, что большинство из них присутствует и в центральной нервной системе (табл. 52.3). Синтез пептидов тканями центральной нервной системы часто бывает трудно доказать, но с помощью новых молекулярно-биологических методов можно определить активность генов, кодирующих эти вещества. Функция указанных пептидов в центральной и периферической нервной системе находится в процессе исследования.

В. Предшественники и множественные формы. Из основных желудочно-кишечных гормонов только секретин существует в единственной форме (табл. 52.4). Присутствие в тканях желудочно-кишечного тракта и в кровотоке множественных форм этих пептидов затрудняет определение количества и природы их молекул. Решению данной проблемы способствует существование молекул-предшественников. Кроме того, оказывается полезным синтез чистых пептидов, которые могут быть получены в форме, свободной от примесей посторонних пептидов, и затем использованы для изучения функции специфических пептидов.

Г. Перекрывающиеся структура и функция пептидов желудочно-кишечного тракта. Аминокислотные последовательности желудочно-кишечных пептидов в настоящее время уже известны (табл. 52.5). Большинство этих гормонов по сходству их последовательностей и функции могут быть отнесены к одному из двух семейств. Это семейство гастрина (гастрин и холецистокинин) и семейство секретина (секретин, глюкагон, желудочный ингибиторный полипептид, вазоактивный кишечный пептид и глицентин). Нейроэндокринные пептиды-нейротензин, бомбезиноподобные пептиды, вещество Р и соматостатин - не обнаруживают структурного сходства с каким-либо желудочно-кишечным пептидом. Общее свойство этой последней группы молекул состоит в том,

Таблица 52.2. Распределение желудочно-кишечных гормонов. (Slightly modified and reproduced, with permission, from Deveney C. W., Way L. W. Regulatory peptides of the gut. In: Basic and Clinical Endocrinology 2nd ed. Greenspan F. S., Forsham P. H. (editors). Appleton and Lange, 1986.)

(см. скан)

что они имеют очень короткий срок полужизни в плазме и могут не играть в ней физиологической роли.

Д. Механизм действия. Изучение механизма действия желудочно-кишечных пептидных гормонов отстает от аналогичных исследований других гормонов.

Таблнца 52.3. Пептиды, найденные в кишечнике и центральной нервной системе. (Slightly modified and reproduced, with permission, from Deveney C. W., Way L. W. Regulatory peptides of the gut. In: Basic and Cl nical Endocrinology, 2nd ed. Greenspan F. S., Forsham P. H. (editors). Appleton and Lange, 1986.)

До недавнего времени основное внимание уделялось систематизации различных молекул и установлению их физиологического эффекта. Успехи достигнуты лишь при изучении регуляции секреции ферментов ацинарными клетками поджелудочной железы.

Установлено присутствие на панкреатических ацинарных клетках шести различных классов рецепторов (рис. 52.1). Это рецепторы для 1) мускариновыч

Таблица 52.4. Множественные формы желудочно-кишечных гормонов

Таблица 52.5. Аминокислотные последовательности желудочно-кишечных пептидов. (Slightly modified and reproduced, with permission, from Grossman М. I.: The gastrointestinial hormones: An overview. On Endocrinology. James V.H.T. (editor) Excerpta Medica 1977.)

(см. скан)

холинергических агентов; 2) семейства гастрина-холецнстокинина; 3) бомбезина и родственных пептидов; 4) семейства физалемина-вещества Р; 5) секретина и вазоактивного кишечного пептида; 6) холерного токсина.

На рис. 52.1 показано, что соответствующие пептид-рецепторные комплексы активируют два разных внутриклеточных механизма. Один из них включает мобилизацию внутриклеточных резервов кальция, а второй - активацию аденилатциклазы и генерацию сАМР. Оба механизма не пересекаются между собой: например, гастрин не изменяет уровень сАМР, а секретин не влияет на содержание внутриклеточного Са2+. Однако в некоторых точках эти системы конвергируют: так, комбинация секретогенов, действующих через разные механизмы, оказывает синергичный эффект на секрецию ферментов.

Пептиды, вызывающие мобилизацию Са2+ в ацинарных

Рис. 52.1. Механизм действия секретогенов на секрецию ферментов ацинарными клетками поджелудочной железы. Существуют 4 класса рецепторов для секретогенов, которые могут стимулировать мобилизацию клеточного кальция, и 2 класса рецепторов для секретогонов, способных активировать аденилатциклазу и повышать продукцию сАМР клетками. Взаимодействие этих двух путей описано в тексте.

клетках поджелудочной железы, влияют также на метаболизм фосфатидилинозитола и усиливают его превращение в диацилглицерол и различные инозитолфосфаты. Эти эффекты предшествуют изменениям мобилизации и, таким образом, могут быть отнесены к первичному ответу. Они сочетаются с деполяризацией ацинарных клеток, которая может играть роль в секреции амилазы. Молекулярная основа сАМР - опосредованной секреции пока неясна. Конвергенция в действии на секрецию амилазы с одной стороны, и фосфолипидов - с другой, во многих отношениях аналогична взаимодействию других факторов, обсуждавшемуся в гл. 44.

Процесс пищеварения, заключающийся, как известно, в гидролизе пищевых веществ по ходу желудочно-кишечного тракта, всасывании продуктов гидролиза, в основном в форме мономеров, из кишечника в кровь и лимфу и транспортировке их к местам депонирования и утилизации, обеспечивается рядом функций (секреторной, моторной ферментативной, и др.), а также их координацией во времени и пространстве с помощью многообразных центральных и местных механизмов регуляции.

Желудок, проксимальный отдел тонкой кишки, поджелудочная железа D-клетки Тормозит выделение инсулина и глюкагона, большинства известных желудочно-кишечных гормонов (секретина, ГИПа, мотилина, гастрина); тормозит активность париетальных клеток желудка и ацинарных клеток поджелудочной железы.

Вазоактивный интестинальный (ВИП) пептид. Во всех отделах желудочно-кишечного тракта D-клетки Тормозит действие холецистокинина, секрецию соляной кислоты и пепсина желудком, стимулированную гистамином, расслабляет гладкие мышцы кровеносных сосудов, желчного пузыря.

Панкреатический полипептид (ПП) Поджелудочная железа D2-клетки Антагонист ХЦК-ПЗ, усиливает пролиферацию слизистой оболочки тонкой кишки, поджелудочной железы и печени; участвует в регуляции обмена углеводов и липидов.

Секретин . Тонкий кишечник S-клетки Стимулирует секрецию бикарбонатов и воды поджелудочной железой, печенью, железами Бруннера, пепсина; тормозит секрецию в желудке.

Холецистокинин-панкреозимин (ХЦК-ПЗ) Тонкий кишечник I-клетки Возбуждает выход ферментов и в слабой степени стимулирует выход бикарбонатов поджелудочной железой, тормозит секрецию соляной кислоты в желудке, усиливает сокращение желчного пузыря и желчевыделение, усиливает моторику тонкой кишки.

Энтероглюкагон . Тонкий кишечник ЕС1-клетки Тормозит секреторную активность желудка, снижает в желудочном соке содержание К+ и повышает содержание Са2+, тормозит моторику желудка и тонкой кишки.

Мотилин . Проксимальный отдел тонкой кишки ЕС2-клетки Возбуждает секрецию пепсина желудком и секрецию поджелудочной железы, ускоряет эвакуацию содержимого желудка.

Гастроингибирующий пептид (ГИП). Тонкий кишечник К-клетки Тормозит выделение соляной кислоты и пепсина, высвобождение гастрина, моторику желудка, возбуждает секрецию толстой кишки.

Субстанция Р . Тонкая кишка ЕС1-клетки Усиливает моторику кишечника, слюноотделение, тормозит высвобождение инсулина.

Вилликинин . Двенадцатиперстная кишка ЕС1-клетки Стимулирует ритмические сокращения ворсинок тонкой кишки.

Энтерогастрон . Двенадцатиперстная кишка ЕС1-клетки Тормозит секреторную активность и моторику желудка.

Серотони . н Желудочно-кишечный тракт ЕС1,ЕС2-клетки Тормозит выделение соляной кислоты в желудке, стимулирует выделение пепсина, активирует секрецию поджелудочной железы, желчевыделение, кишечную секрецию.

Гистамин . Желудочно-кишечный тракт ЕС2-клетки Стимулирует выделение секрета желудка и поджелудочной железы, расширяет кровеносные капилляры, оказывает активирующее влияние на моторику желудка и кишечника.

Инсулин . Поджелудочная железа Бета-клетки Стимулирует транспорт веществ через клеточные мембраны, способствует утилизации глюкозы и образованию гликогена, тормозит липолиз, активирует липогенез, повышает интенсивность синтеза белка.

Глюкагон . Поджелудочная железа Альфа-клетки Мобилизует углеводы, тормозит секрецию желудка и поджелудочной железы, тормозит моторику желудка и кишечника.

Введение:

Ø Биохимические механизмы регуляции пищеварения гормоны желудочно-кишечного тракта

Заключение:

Литература:

Введение

Протеолитические ферменты подразделяют по особенности их действия на экзопептидазы , отщепляющие концевые аминокислоты, и эндопептидазы , действующие на внутренние пептидные связи.

При нарушении нормальной секреции HCl возникают гипоацидный или гиперацидный гастрит, отличающиеся друг от друга по клиническим проявлениям.

Процесс пищеварения, заключающийся, как известно, в гидролизе пищевых веществ по ходу желудочно-кишечного тракта, всасывании продуктов гидролиза.

Заключение

Переваривание белков, то есть расщепление их до отдельных аминокислот, начинается в желудке и заканчивается в тонком кишечнике. Переваривание происходит под действием желудочного, панкреатического и кишечного соков, которые содержат протеолитические ферменты (протеазы или пептидазы). Протеолитические ферменты относятся к классу гидролаз.

Основная масса аминокислот, образовавшихся в пищеварительном тракте в результате переваривания белков, всасывается в кровь и пополняет аминокислотный фонд организма. Определённое количество невсосавшихся аминокислот подвергается гниению в толстом кишечнике.

Литература

1. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. М.: Медицина, 1990 г.

2. Биохимия человека. В 2-х томах / Марри Р., Греннер Д., Мейес П., Родуэлл В. М.: Мир, 1993 г.

3. Бышевский А.Ш., Герсенев О.А. Биохимия для врача. Екатеринбург, 1994 г.

4. Гринстейн Б., Гринстейн А. Наглядная биохимия. М.: ГЭОТАР Медицина, 2000 г.

5. Кнорре Д.Г., Мызина С.Д. Биологическая химия. М.: Высшая школа, 2000 г.

Название гормона Место выработки гормона Типы эндокринных клеток Эффект действия гормонов
Соматостатин Желудок, проксимальный отдел тонкой кишки, поджелудочная железа D-клетки Тормозит выделение инсулина и глюкагона, большинства известных желудочно-кишечных гормонов (секретина, ГИПа, мотилина, гастрина); тормозит активность париетальных клеток желудка и ацинарных клеток поджелудочной железы
Вазоактивный интестинальный (ВИП) пептид Во всех отделах желудочно-кишечного тракта D-клетки Тормозит действие холецистокинина, секрецию соляной кислоты и пепсина желудком, стимулированную гистамином, расслабляет гладкие мышцы кровеносных сосудов, желчного пузыря
Панкреатический полипептид (ПП) Поджелудочная железа D2-клетки Антагонист ХЦК-ПЗ, усиливает пролиферацию слизистой оболочки тонкой кишки, поджелудочной железы и печени; участвует в регуляции обмена углеводов и липидов
Гастрин Антральная часть желудка, поджелудочная железа, проксимальный отдел тонкой кишки G-клетки Стимулирует секрецию И выделение пепсина желудочными железами, возбуждает моторику расслабленного желудка и двенадцатиперстной кишки, а также желчного пузыря
Секретин Тонкий кишечник S-клетки Стимулирует секрецию бикарбонатов и воды поджелудочной железой, печенью, железами Бруннера, пепсина; тормозит секрецию в желудке
Холецистокинин-панкреозимин (ХЦК-ПЗ) Тонкий кишечник I-клетки Возбуждает выход ферментов и в слабой степени стимулирует выход бикарбонатов поджелудочной железой, тормозит секрецию соляной кислоты в желудке, усиливает сокращение желчного пузыря и желчевыделение, усиливает моторику тонкой кишки
Мотилин Проксимальный отдел тонкой кишки ЕС2-клетки Возбуждает секрецию пепсина желудком и секрецию поджелудочной железы, ускоряет эвакуацию содержимого желудка
Гистамин Желудочно-кишечный тракт ЕС2-клетки Стимулирует выделение секрета желудка и поджелудочной железы, расширяет кровеносные капилляры, оказывает активирующее влияние на моторику желудка и кишечника
Инсулин Поджелудочная железа Бета-клетки Стимулирует транспорт веществ через клеточные мембраны, способствует утилизации глюкозы и образованию гликогена, тормозит липолиз, активирует липогенез, повышает интенсивность синтеза белка
Глюкагон Поджелудочная железа Альфа-клетки Мобилизует углеводы, тормозит секрецию желудка и поджелудочной железы, тормозит моторику желудка и кишечника

Обмен веществ в организме. Пластическая и энергетическая роль питательных еществ.

Постоянный обмен веществ и энергии между организмом и окружающей средой является необходимым условием его существования и отражает их единство. Сущность в том, что поступающие в организм питательные вещества, после пищеварительных превращений, используются как пластический материал. Энергия, образующаяся при этом восполняет энергозатраты организма. Синтез сложных специфичных для организма веществ из простых соединений, всасывающихся в кровь, называется ассимиляцией или анаболизмом. Распад веществ организма до конечных продуктов, сопровождающийся выделением энергии называется диссимиляцией или катаболизмом. Эти процессы неразрывно связаны. Ассимиляция обеспечивает аккумуляцию энергии, а энергия, выделяющаяся при диссимиляции необходима для синтеза веществ. Анаболизм и катаболизм объединены в единый процесс с помощью АТФ и НАДФ. Посредством их энергия передается для процессов ассимиляции. Белки в основном являются пластическим материалом. Они входят в состав клеточных мембран, органелл. Жирами организма являются триглицериды, фосфолипиды. и стерины. Основная их роль энергетическая. При окислении липидов выделяется наибольшее количество энергии, поэтому около половины энергозатрат организма обеспечивается липидами. Они также являются аккумулятором энергии в организме, потому что откладываются в жировых депо и используются по мере необходимости. Жир депо составляют около 15% веса тела. Жиры имеют определенную пластическую роль, так как фосфолипиды, холестерин, жирные кислоты входят в состав клеточных мембран и органелл. Кроме того, они покрывают внутренние органы. Липиды являются и источниками эндогенной воды. При окислении 100 г жира образуется около 100 г воды. Особую функцию выполняет бурый жир. Содержащийся в его жировых клетках полипептид, при охлаждении организма, тормозит ресинтез АТФ за счет липидов. В результате резко усиливается теплопродукция. Углеводы в основном играют энергетическую роль, так как служат основным источником энергии для клеток. Они аккумулируются в виде гликогена в печени и мышцах. Углеводы имеют определенное пластическое значение, так как глюкоза необходима для образования нуклеотидов и синтеза некоторых аминокислот.

Методы исследования энергетического баланса организма.

Соотношение между количеством энергии, поступившей с пищей, и энергии, выделенной во внешнюю среду называется энергетическим балансом организма. Существует 2 метода определения выделяемой организмом энергии.

· 1.Прямая калориметрия. Ее принцип основан на том, что все виды энергии в конечном итоге переходят в тепловую. Поэтому при прямой калориметрии определяют количество тепла, выделяемого организмом в окружающую среду за единицу времени. Для этого используют специальные камеры с хорошей теплоизоляцией и системой специальных труб, по которым циркулирует и нагревается вода.

· 2.Непрямая калориметрия. Она заключается в определении соотношения выделенного углекислого газа и поглощенного кислорода за единицу времени. Это полный газовый анализ. Данное соотношение называется дыхательным коэффициентом (ДК).

Можно использовать неполный газовый анализ. Величина поступившей в организм энергии определяется количеством и энергетической ценностью пищевых веществ. Их энергетическую ценность исследуют путем сжигания в бомбе Бертло в атмосфере чистого кислорода Таким путем получают физический калорический коэффициент. Для белков он = 5,8 ккал/г, углеводов 4,1 ккал/г, жиров 9,3 ккал/г. Для расчетов используют физиологический калорический коэффициент. Для углеводов и жиров он соответствует. Для белков он меньше физического - 4,1 ккал/г. В организме они расщепляются до азотистых соединений, содержащих остаточную энергию.

133. Основной обмен, значение его определения для клиники.

Количество энергии, которое затрачивается организмом на выполнение жизненно важных функций, Называется основным обменом (ОО). Это затраты энергии на поддержание постоянства температуры тела, работу внутренних органов, ЦНС, желез. Основной обмен измеряется методами прямой и непрямой калориметрии при базисных условиях: лежа с расслабленными мышцами, при температуре комфорта, натощак (не раньше чем через 12 часов после еды). Согласно закону поверхности Рубнера и Рише, величина основного обмена прямопропорциональна площади поверхности тела. Это связано с тем, что наибольшее количество энергии тратится на поддержание постоянства температуры тела. Помимо этого на величину основного обмена влияют пол, возраст, условия окружающей среды, характер питания, состояние желез внутренней секреции, нервной системы. У мужчин основной обмен на 10% больше, чем у женщин. В среднем его величина у мужчин 1700 ккал/сут., у женщин 1550. У детей его величина, относительно веса тела, больше, чем в зрелом возрасте. У пожилых он наоборот меньше. В холодном климате или зимой основной обмен возрастает, летом снижается. При гипертиреозе он резко увеличивается, а гипотиреозе падает. Значение для клиники: определение основного обмена, (согласно соотношениям массы тела, возраста, роста и поверхности тела) необходимо для предварительной диагностики гиперфункции ЩЖ ( основного обмена). Микседема, недостаточность гипофиза, половых желез - ↓ основного обмена.

Этот орган имеет весьма ограниченное значение для переваривания пищи. Вне пищеварения отмечается периодическое отделение небольшого количества сока этого отдела кишечника.

Здесь существует богатая нормальная бактериальная флора (эубиоз ), выполняющая ряд важнейших функций для макроорганизма:

1) участие в формировании иммунобиологической реактивности организма (см. ниже);

2) синтезирует витамины К, Н (биотин), группы В (В 1 , В 6 , В 12);

3) энзимы бактерий частично расщепляют непереваренные пищевые волокна (целлюлозу, гемицеллюлозу, пектины, лигнины);

4) пищеварительные соки частично разрушаются и реабсорбируются в тонком кишечнике, а другая часть поступает с химусом в толстый кишечник, где микроорганизмы инактивируют их ферменты ;

5) вызывает сбраживание углеводов (до кислых продуктов (молочной, уксусной кислот), а также до алкоголя) и гниение белков . В результате последнего из аминокислот образуются ядовитые вещества: индол, скатол, крезол, фенол и другие, которые всосавшись, попадают в печень, где обезвреживаются путём образования эфиров серной (ФАФС – активная форма этого соединения) и гликозидов глюкуроновой кислот. Брожение в кишечнике создаёт кислую среду, препятствующую гниению. При сбалансированном рационе питания указанные процессы уравновешены.

В толстом кишечнике всасываются также вода и минеральные соли. Всё остальное входит в состав каловых масс.

В регуляции моторной деятельности толстого кишечника принимают участие гуморальные факторы, причём в зависимости от его отделов действие БАВ прямо противоположно. Так, например, серотонин стимулирует вышеуказанную функцию в верхних отделах толстого кишечника, но тормозит её в нижних частях. В роли ингибиторов выступают адреналин, глюкагон, секретин, а активирующее влияние оказывают кортизол, гастрин, ХЦК.

2.2. Гормоны пищеварительной системы

Эндокринология как наука началась с открытия желудочно-кишечного гормона. В 1902 году Бейлис и Старлинг ввели в денервированную петлю тощей кишки собаки соляную кислоту и обнаружили увеличение секреции жидкости поджелудочной железой. При внутривенном поступлении экстракта слизистой тощей кишки эффект был аналогичный. Исследователи пришли к выводу, что за это явление отвечает «секретин», который высвобождается при стимуляции верхних отделов кишечника и переносится с кровью к поджелудочной железе, где и оказывает своё действие. Ученые первыми использовали термин «гормон», а «секретин» оказался первым гормоном с выясненной функцией. Если его активность была установлена в 1902 году, то потребовалось целых 60 лет, чтобы идентифицировать гормон химически. За это время было обнаружено много новых гормонов, расшифрована их аминокислотная последовательность и осуществлён синтез. Из тканей пищеварительного тракта выделено несколько биологически активных соединений, обладающих специфическим действием (таблица 7).

Многие из них удовлетворяют типичному определению «гормон». К ним относятся гастрин, секретин, ЖИП и, возможно, ХЦК, мотилин, панкреатический полипептид и энтероглюкагон, энтерокринин. Другие олигопептиды обладают паракринным эффектом (способны воздействовать на прилегающие клетки данной ткани) или действуют нейроэндокринным путём (как локальные нейромедиаторы или нейромодуляторы).

К соединениям с нейроэндокринным действием относят вазоактивный интестинальный пептид, соматостатин, энкефалины, бомбезиноподобные пептиды и нейротензин. Многие из этих веществ, по-видимому, обладают in vivo паракринным действием, так как при добавлении к тканевым или органным культурам оказывают влияние на различные клетки.

Отличительной особенностью желудочно-кишечной эндокринной системы является то, что её клетки рассеяны по всему пищеварительному тракту, а не собраны в отдельных органах, как это характерно для более типичных желёз внутренней секреции.

Поскольку многие вышеназванные пептиды находятся в нейронах ЖКТ, неудивительно, что большинство из них присутствует и в ЦНС. Около 40 интестинальных гормонов уже обнаружено в нервных тканях, и весьма вероятно, что ещё большее количество их ждёт своего открытия.

Таблица 7

Гормоны желудочно-кишечного тракта

Место синтеза

Механизм

действия

Основная функция

Антральный

отдел желудка,

12-пёрстная

Ответственен за секрецию НСl и пепсиногена желуд-ком

Холецистокинин

12-пёрстная и тощая кишка

Активирует выделе-ние панкреатических ферментов и сокраще-ние жёлчного пузыря

Секретин

12-пёрстная и тощая кишка

Способствует вырабо-тке воды и бикарбона-тов поджелудочной железой

Желудочный ингибиторный полипептид

Тонкий кишечник

Ингибирует секрецию НСl желудком и высвобождает инсу-лин в ответ на повы-шение содержания глюкозы

Вазоактивный интестинальный полипептид

Поджелудочная железа

Стимулирует секре-цию бикарбонатов pancreas и регулирует перистальтику кишеч-ника за счёт расслаб-ления гладких мышц

Тонкий кишечник

Запускает моторику кишечника при переваривании пищи

Нейротензин

Подвздошная кишка

Соматостатин

Желудок, 12-пёрстная киш-ка, поджелу-дочная железа

Множественные ингибиторные эффекты

Энтероглюкагон

Поджелудочная железа, тонкий кишечник

Физиологическое действие неизвестно

Панкреатический полипептид

Поджелудочная железа

Ингибирует секрецию бикарбонатов подже-лудочной железой; антагонист холецистокинина

Энкефалины

Желудок, 12-пёрстная кишка, жёлч-ный пузырь

Опиатоподобные эффекты; тормозят секрецию как ферментов желудка, так и поджелудочной железы

Бомбезиноподобные пептиды

Желудок, 12-пёрстная кишка

Стимулируют секрецию гастрина и холецистокинина

Энтерокринин

Тонкий кишечник

Активирует выработку кишечного сока

Примечание: Э – эндокринный;

Н – нейрокринный;

П – паракринный;

() – возможно.

Из основных пищеварительных гормонов только секретин существует в единственной форме, остальные присутствуют в тканях и кровотоке в виде множественных соединений, что затрудняет определение количества и природы их молекул. Однако, в настоящее время расшифрован химический состав более 50% интестинальных БАВ. Большинство из них по сходству аминокислотных последовательностей и функции могут быть отнесены к одной из двух групп. Это семейство гастрина (гастрин и холецистокинин) и секретина (секретин, глюкагон, желудочный ингибиторный полипептид, вазоактивный кишечный полипептид). Нейроэндокринные пептиды – нейротензин, бомбезиноподобные пептиды и соматостатин – не обнаруживают структурного сходства с каким-либо кишечным гормоном. Общее свойство этой группы молекул состоит в том, что они имеют очень короткий срок полужизни в плазме и физиологической роли в ней не играют.

Биологически активные вещества желудочно-кишечного тракта по классификации гормонов относятся к тканевым . При изучении вида рецепции установлено, что они обладают трансмембранной трансдукцией как через активацию аденилатциклазы с участием second-messenger – 3′,5′-циклического АМФ, так и через стимуляцию фосфолипазы С с образованием диацилглицерола и инозитолтрифосфатов и мобилизацией ионов Са 2+ . У каждого из них соответствующие органы-мишени.

Гастроинтестинальные гормоны имеют широкий спектр физиологической активности, влияя как на процессы переваривания, так и вызывая общие непищеварительные эффекты. Они стимулируют, тормозят, модулируют секрецию, моторику, всасывание, регулируют трофику и пролиферацию в желудке и в поджелудочной железе.

Для каждого из регуляторных пептидов характерны разные эффекты, но один из них является основным. Инактивация БАВ обычно происходит в печени, почках и лёгких.