Эта гробница мала, но слава над ней необъятна.
В ней перед тобою сокрыт многоразумный Фалес.

Надпись на гробнице Фалеса Милетского

Представьте себе такую картину. 600 г. до н.э. Египет. Перед вами огромнейшая египетская пирамида. Чтобы удивить фараона и остаться у него в фаворитах вам нужно измерить высоту этой пирамиды. В распоряжении у вас… ничего. Можно пасть в отчаяние, а можно поступить, как Фалес Милетский : использовать теорему подобия треугольников. Да, оказывается, все достаточно просто. Фалес Милетский подождал пока длина его тени и его рост совпадут, а затем с помощью теоремы о подобии треугольников нашел длину тени пирамиды, которая соответственно, была равна тени, отбрасываемой пирамидой.

Кто же такой этот Фалес Милетский ? Человек, который обрел славу одного из «семи мудрецов» древности? Фалес Милетский – древнегреческий философ, который отличился успехами в области астрономии, а также математики и физики. Годы его жизни были установлены только приблизительно: 625-645 гг до н.э.

Среди доказательств знания Фалесом астрономии можно привести следующий пример. 28 мая 585 г до н.э. предсказание Милетским солнечного затмения помогло прекратить длившуюся уже 6 лет войну между Лидией и Мидией. Это явление настолько испугало мидян, что они согласились на невыгодные для себя условия заключения мира с лидийцами.

Довольно широко известна легенда, которая характеризует Фалеса как находчивого человека. Фалесу часто приходилось слышать нелестные отзывы о его бедности. Однажды он решил доказать то, что и философы могут при желании жить в достатке. Еще зимой Фалес по наблюдению за звездами определил, что летом будет хороший урожай маслин. Тогда же он нанял маслодавильни в Милете и на Хиосе. Это обошлось ему довольно дешево, так как зимой спрос на них практически отсутствует. Когда же маслины дали богатый урожай, свои маслодавильни Фалес начал сдавать внаем. Собранное большое количество денег таким методом расценивалось как доказательство того, что философы могут зарабатывать своим умом, но их призвание выше таких земных проблем. Эта легенда, кстати, повторялась самим Аристотелем.

Что же касается геометрии, то многое из его «открытий» было позаимствовано у египтян. И все же этот перенос знаний в Грецию считается одной из основных заслуг Фалеса Милетского.

Достижениями Фалеса считаются формулировка и доказательство следующих теорем:

  • вертикальные углы равны;
  • равными треугольниками признаются те, у которых сторона и два прилегающих угла соответственно равны;
  • углы при основании равнобедренного треугольника равны;
  • диаметр делит круг пополам;
  • вписанный угол, опирающийся на диаметр, является прямым.

Именем Фалеса названа еще одна теорема, которая полезна при решении геометрических задач. Существует ее обобщенный и частный вид, обратная теорема, формулировки также могут немного отличаться в зависимости от источника, но смысл их всех остается одним. Рассмотрим эту теорему.

Если параллельные прямые пересекают стороны угла и отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Допустим, точки А 1 , А 2 , А 3 – точки пересечения параллельных прямых с одной из сторон угла, а В 1 , В 2 , В 3 – точки пересечения параллельных прямых с другой стороной угла. Необходимо доказать, что если А 1 А 2 = А 2 А 3 , то и В 1 В 2 = В 2 В 3 .

Через точку В 2 проведем прямую, параллельную прямой А 1 А 2 . Обозначим новую прямую С 1 С 2 . Рассмотрим параллелограммы A 1 C 1 B 2 A 2 и A 2 B 2 C 2 A 3 .

Свойства параллелограмма позволяют нам утверждать, что A1A2 = C 1 B 2 и A 2 A 3 = B 2 C 2 . А так как по нашему условию А 1 А 2 = А 2 А 3 , то и C 1 B 2 = В 2 С 2 .

И, наконец, рассмотрим треугольники Δ C 1 B 2 B 1 и Δ C 2 B 2 B 3 .

C 1 B 2 = B 2 C 2 (доказано выше).

А это значит, что Δ C 1 B 2 B 1 и Δ C 2 B 2 B 3 будут равны по второму признаку равенства треугольников (по стороне и прилегающим углам).

Таким образом, теорема Фалеса доказана.

Использование данной теоремы значительно облегчит и ускорит решение геометрических задач. Успехов в освоении этой занимательной науки математики!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Если стороны угла, пересекают прямые параллельные линии которые одну из сторон разделяют на несколько отрезков, то и вторую сторону, прямые так же разделят на равнозначны с другой стороной отрезки.

Теорему Фалеса доказывает следующее: С 1 , С 2 , С 3 - это места где пересекаются прямые параллельные на любой стороне угла. С 2 находится посередине относительно С 1 и С 3 .. Точки D 1 , D 2 , D 3 - это места где пересекаются прямые, которые соответствуют прямым с другой стороной угла. Доказываем, что когда C 1 C 2 = C 2 C з, значит и D 1 D 2 =D 2 D 3 .
Проводим в месте D 2 прямой отрезок КР, параллельный участку C 1 C 3 . В свойствах параллелограмма C 1 C 2 =KD 2 , C 2 C 3 = D 2 P. Если C 1 C 2 =C 2 C 3 , то и KD 2 =D 2 P.

Полученные треугольные фигуры D 2 D 1 K и D 2 D 3 P равняются. И D 2 K=D 2 P по доказательству. Углы с верхней точкой D 2 равняются как вертикальные, а углы D 2 KD 1 и D 2 PD 3 равняются как внутренние накрест лежащие при параллельных C 1 D 1 и C 3 D 3 и разделяющей KP.
Так как D 1 D 2 =D 2 D 3 теорема доказана по равенству сторон треугольника

Заметка:
Если взять не стороны угла, а два прямых отрезка, доказательство будет такое же.
Любые прямые отрезки параллельные друг другу, которые пересекают две рассматриваемые нами прямые и разделяющие одну из них на одинаковые участки, тоже самое делают и со второй.

Рассмотрим несколько примеров

Первый пример

Условием задания требуется разбить прямую СD на п одинаковых отрезков.
Проводим от точки С полу-прямую с, которая не лежит на прямой СD. Отметим на ней одинаковые по величине части. СС 1 , С 1 С 2 , С 2 С 3 .....С п-1 С п. Соединяем С п с D. Проводим прямые от точек С 1 ,С 2 ,....,С п-1 которые будут параллельны относительно С п D. Прямые будут пересекать СD в местах D 1 D 2 D п-1 и разделять прямую СD на п одинаковых отрезков.

Второй пример

На стороне АВ треугольника АВС отмечена точка СК. Отрезок СК пересекает медиану АМ треугольника в точке Р, при этом АК= АР. Требуется найти отношение ВК к РМ.
Проводим через точку М прямой отрезок, параллельный СК, который пересекает АВ в точке D

По теореме Фалеса ВD=КD
По теореме пропорциональных отрезков получаем, что
РМ = КD = ВК/2, следовательно, ВК: РМ = 2:1
Ответ: ВК: РМ = 2:1

Третий пример

В треугольнике АВС, сторона ВС = 8 см. Прямая DE пересекает стороны АВ и ВС параллельно АС. И отсекает на стороне ВС отрезок ЕС = 4см. Доказать, что АD = DВ.

Так как ВС = 8 см и ЕС = 4см, то
ВЕ = ВС-ЕС, следовательно, ВЕ = 8-4 = 4(см)
По теореме Фалеса , так как АС параллельна DE и ЕС = ВЕ то, следовательно, АD = DВ. Что и требовалось доказать.

В женском журнале - онлайн, Вы найдете много интересной информации для себя. Так же есть раздел, посвященный стихам которые написал Сергей Есенин . Заходите не пожалеете!

В теореме нет ограничений на взаимное расположение секущих (она верна как для пересекающихся прямых, так и для параллельных). Также не важно, где находятся отрезки на секущих.



Доказательство в случае параллельных прямых

Проведем прямую BC. Углы ABC и BCD равны как внутренние накрест лежащие при параллельных прямых AB и CD и секущей BC, а углы ACB и CBD равны как внутренние накрест лежащие при параллельных прямых AC и BD и секущей BC. Тогда по второму признаку равенства треугольников треугольники ABC и DCB равны. Отсюда следует, что AC = BD и AB = CD.

Также существует теорема о пропорциональных отрезках :

Параллельные прямые отсекают на секущих пропорциональные отрезки :

\frac{A_1A_2}{B_1B_2}=\frac{A_2A_3}{B_2B_3}=\frac{A_1A_3}{B_1B_3}.

Теорема Фалеса является частным случаем теоремы о пропорциональных отрезках, поскольку равные отрезки можно считать пропорциональными отрезками с коэффициентом пропорциональности, равным 1.

Обратная теорема

Если в теореме Фалеса равные отрезки начинаются от вершины (часто в школьной литературе используется такая формулировка), то обратная теорема также окажется верной. Для пересекающихся секущих она формулируется так:

Таким образом (см. рис.) из того, что \frac{CB_1}{CA_1}=\frac{B_1B_2}{A_1A_2}=\ldots = {\rm idem} следует, что прямые A_1B_1||A_2B_2||\ldots.

Если секущие параллельны, то необходимо требовать равенство отрезков на обеих секущих между собой, иначе данное утверждение становится неверным (контрпример - трапеция, пересекаемая линией, проходящей через середины оснований).

Вариации и обобщения

Следующее утверждение, двойственно к лемме Соллертинского :

  • Теорема Фалеса до сих пор используется в морской навигации в качестве правила о том, что столкновение судов, двигающихся с постоянной скоростью, неизбежно, если сохраняется курс судов друг на друга.
  • Вне русскоязычной литературы теоремой Фалеса иногда называют другую теорему планиметрии, а именно, утверждение о том , что вписанный угол , опирающийся на диаметр окружности , является прямым. Открытие этой теоремы действительно приписывается Фалесу, о чём есть свидетельство Прокла .

Напишите отзыв о статье "Теорема Фалеса"

Литература

  • Атанасян Л. C. и др. Геометрия 7-9. - Изд. 3-е. - М .: Просвещение, 1992.

Примечания

См. также

  • Теорема Фалеса об угле, опирающемся на диаметр окружности

Отрывок, характеризующий Теорема Фалеса

– Я ничего не думаю, я только не понимаю этого…
– Подожди, Соня, ты всё поймешь. Увидишь, какой он человек. Ты не думай дурное ни про меня, ни про него.
– Я ни про кого не думаю дурное: я всех люблю и всех жалею. Но что же мне делать?
Соня не сдавалась на нежный тон, с которым к ней обращалась Наташа. Чем размягченнее и искательнее было выражение лица Наташи, тем серьезнее и строже было лицо Сони.
– Наташа, – сказала она, – ты просила меня не говорить с тобой, я и не говорила, теперь ты сама начала. Наташа, я не верю ему. Зачем эта тайна?
– Опять, опять! – перебила Наташа.
– Наташа, я боюсь за тебя.
– Чего бояться?
– Я боюсь, что ты погубишь себя, – решительно сказала Соня, сама испугавшись того что она сказала.
Лицо Наташи опять выразило злобу.
– И погублю, погублю, как можно скорее погублю себя. Не ваше дело. Не вам, а мне дурно будет. Оставь, оставь меня. Я ненавижу тебя.
– Наташа! – испуганно взывала Соня.
– Ненавижу, ненавижу! И ты мой враг навсегда!
Наташа выбежала из комнаты.
Наташа не говорила больше с Соней и избегала ее. С тем же выражением взволнованного удивления и преступности она ходила по комнатам, принимаясь то за то, то за другое занятие и тотчас же бросая их.
Как это ни тяжело было для Сони, но она, не спуская глаз, следила за своей подругой.
Накануне того дня, в который должен был вернуться граф, Соня заметила, что Наташа сидела всё утро у окна гостиной, как будто ожидая чего то и что она сделала какой то знак проехавшему военному, которого Соня приняла за Анатоля.
Соня стала еще внимательнее наблюдать свою подругу и заметила, что Наташа была всё время обеда и вечер в странном и неестественном состоянии (отвечала невпопад на делаемые ей вопросы, начинала и не доканчивала фразы, всему смеялась).
После чая Соня увидала робеющую горничную девушку, выжидавшую ее у двери Наташи. Она пропустила ее и, подслушав у двери, узнала, что опять было передано письмо. И вдруг Соне стало ясно, что у Наташи был какой нибудь страшный план на нынешний вечер. Соня постучалась к ней. Наташа не пустила ее.
«Она убежит с ним! думала Соня. Она на всё способна. Нынче в лице ее было что то особенно жалкое и решительное. Она заплакала, прощаясь с дяденькой, вспоминала Соня. Да это верно, она бежит с ним, – но что мне делать?» думала Соня, припоминая теперь те признаки, которые ясно доказывали, почему у Наташи было какое то страшное намерение. «Графа нет. Что мне делать, написать к Курагину, требуя от него объяснения? Но кто велит ему ответить? Писать Пьеру, как просил князь Андрей в случае несчастия?… Но может быть, в самом деле она уже отказала Болконскому (она вчера отослала письмо княжне Марье). Дяденьки нет!» Сказать Марье Дмитриевне, которая так верила в Наташу, Соне казалось ужасно. «Но так или иначе, думала Соня, стоя в темном коридоре: теперь или никогда пришло время доказать, что я помню благодеяния их семейства и люблю Nicolas. Нет, я хоть три ночи не буду спать, а не выйду из этого коридора и силой не пущу ее, и не дам позору обрушиться на их семейство», думала она.

Анатоль последнее время переселился к Долохову. План похищения Ростовой уже несколько дней был обдуман и приготовлен Долоховым, и в тот день, когда Соня, подслушав у двери Наташу, решилась оберегать ее, план этот должен был быть приведен в исполнение. Наташа в десять часов вечера обещала выйти к Курагину на заднее крыльцо. Курагин должен был посадить ее в приготовленную тройку и везти за 60 верст от Москвы в село Каменку, где был приготовлен расстриженный поп, который должен был обвенчать их. В Каменке и была готова подстава, которая должна была вывезти их на Варшавскую дорогу и там на почтовых они должны были скакать за границу.
У Анатоля были и паспорт, и подорожная, и десять тысяч денег, взятые у сестры, и десять тысяч, занятые через посредство Долохова.
Два свидетеля – Хвостиков, бывший приказный, которого употреблял для игры Долохов и Макарин, отставной гусар, добродушный и слабый человек, питавший беспредельную любовь к Курагину – сидели в первой комнате за чаем.
В большом кабинете Долохова, убранном от стен до потолка персидскими коврами, медвежьими шкурами и оружием, сидел Долохов в дорожном бешмете и сапогах перед раскрытым бюро, на котором лежали счеты и пачки денег. Анатоль в расстегнутом мундире ходил из той комнаты, где сидели свидетели, через кабинет в заднюю комнату, где его лакей француз с другими укладывал последние вещи. Долохов считал деньги и записывал.
– Ну, – сказал он, – Хвостикову надо дать две тысячи.
– Ну и дай, – сказал Анатоль.
– Макарка (они так звали Макарина), этот бескорыстно за тебя в огонь и в воду. Ну вот и кончены счеты, – сказал Долохов, показывая ему записку. – Так?
– Да, разумеется, так, – сказал Анатоль, видимо не слушавший Долохова и с улыбкой, не сходившей у него с лица, смотревший вперед себя.

Тема урока

Цели урока

  • Познакомиться с новыми определениями и вспомнить некоторые уже изученные.
  • Сформулировать и доказать свойства квадрата, доказать его свойства.
  • Научиться применять свойства фигур при решении задач.
  • Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
  • Воспитательные - посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.

Задачи урока

  • Проверить умение учащихся решать задачи.

План урока

  1. Историческая справка.
  2. Фалес как математик и его труды.
  3. Полезно вспомнить.

Историческая справка

  • Теорема Фалеса до сих пор используется в морской навигации в качестве правила о том, что столкновение судов, двигающихся с постоянной скоростью, неизбежно, если сохраняется курс судов друг на друга.


  • Вне русскоязычной литературы теоремой Фалеса иногда называют другую теорему планиметрии, а именно, утверждение о том, что вписанный угол, опирающийся на диаметр окружности, является прямым. Открытие этой теоремы действительно приписывается Фалесу, о чём есть свидетельство Прокла.
  • Основы геометрии Фалес постигал в Египте.

Открытия и заслуги ее автора

А известно ли вам, что Фалес Милетский был одним из семи самых известных по тем временам, мудрецом Греции. Он основал Ионийскую школу. Идею, которую продвигал Фалес в этой школе, было единство всего сущего. Мудрец считал, что есть единое начало, от которого произошли все вещи.

Огромной заслугой Фалеса Милетского является создание научной геометрии. Этот великий учений сумел с египетского искусства измерения создать дедуктивную геометрию, базой которой есть общие основания.

Кроме огромных познаний в геометрии, Фалес еще и неплохо разбирался в астрономии. Эму первому удалось предсказать полное затмение Солнца. А ведь это происходило не в современном мире, а в далеком 585 году, еще до нашей эры.

Фалес Милетский был тем человеком, который сообразил, что север можно точно определить по созвездию Малой Медведицы. Но и это не было его последним открытием, так как он сумел в точности определить продолжительность года, разбить его на триста шестьдесят пять дней, а также установил время равноденствий.

Фалес на самом деле был всесторонне развитым и мудрым человеком. Кроме того, что он славился как прекрасный математик, физик, астроном, он еще и как настоящий метеоролог, смог довольно точно предсказать урожай оливок.

Но самое примечательное то, что Фалес никогда не ограничивался в своих познаниях только научно-теоретической областью, а всегда пытался закрепить доказательства своих теорий на практике. И самое интересное, то, что великий мудрец не сосредотачивался на какой-то одной области своих познаний, его интерес имел различные направленности.

Имя Фалеса стало нарицательным для мудреца уже тогда. Его важность и значимость для Греции была так велика, как для России имя Ломоносова. Конечно, его мудрость можно толковать по-разному. Но точно можно сказать, что ему были присущи и изобретательность, и практическая смекалка, и в какой-то степени отрешенность.

Фалес Милетский был отличным математиком, философом, астрономом, любил путешествовать, был купцом и предпринимателем, занимался торговлей, а также был неплохим инженером, дипломатом, провидцем и активно участвовал в политической жизни.

Он даже умудрился с помощью посоха и тени определить высоту пирамиды. А было это так. В один погожий солнечный день Фалес поставил свой посох на границе, где заканчивалась тень от пирамиды. Далее он дождался, когда длинна от тени его посоха сравнялась с его высотой, и замерил длину тени пирамиды. Вот так, казалось бы просто Фалес определил высоту пирамиды и доказал, что длина одной тени имеет отношение к длине другой тени, также, как и высота пирамиды относится к высоте посоха. Чем и поразил самого фараона Амасиса.

Благодаря Фалесу все известные в то время знания были переведены в область научного интереса. Он смог донести результаты до уровня, пригодного для научного потребления, выделив определенный комплекс понятий. И возможно с помощью Фалеса началось последующее развитие античной философии.

Теорема Фалеса играет одну важных ролей в математике. Она была известна не только в Древнем Египте и Вавилоне, но и в других странах и являлась почвой для развития математики. Да и в повседневной жизни, при строительстве зданий, сооружений, дорог и т.д., без теоремы Фалеса не обойтись.

Теорема Фалеса в культуре

Теорема Фалеса прославилась не только в математике, но ее приобщили еще и к культуре. Однажды аргентинская музыкальная группа Les Luthiers (исп.) на суд зрителей представила песню, которую посвятила известной теореме. Участники Les Luthiers в своем видеоклипе специально для этой песни предоставили доказательства для прямой теоремы для пропорциональных отрезков.

Вопросы

  1. Какие прямые называются параллельными?
  2. Где практически применяется теорема Фалеса?
  3. О чем гласит теорема Фалеса?

Список использованных источников

  1. Энциклопедия для детей. Т.11. Математика/Глав.ред.М.Д.Аксенова.-м.:Аванта+,2001.
  2. «Единый государственный экзамен 2006. Математика. Учебно-тренировочные материалы для подготовки учащихся/ Рособрнадзор, ИСОП – М.: Интеллект-Центр, 2006»
  3. Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина «Геометрия, 7 – 9: учебник для общеобразовательных учреждений»
Предмети > Математика > Математика 8 класс

называется пропорцией . При этом говорят, что:

x 1 относится к x 2 как y 1 относится к y 2 ,

отношение чисел x 1 и x 2 равно отношению чисел y 1 и y 2 ,

числа x 1 и x 2 соотносятся так же, как числа y 1 и y 2 ,

или, наконец,

числа x 1 и y 1 (!) пропорциональны числам x 2 и y 2 (то есть числители пропорциональны знаменателям).

Входящие сюда числа x 1 , x 2 , y 1 и y 2 называются членами пропорции. Обычно все они положительны, но это необязательно. Предполагается, однако, что ни одно из них не равно нулю. Особого названия это равенство удостоилось по той причине, что оно часто встречается при решении разных математических задач.

Пропорции можно преобразовывать, перенося члены «с верху» одной части равенства «в низ» другой части равенства и наоборот. Эту процедуру легко обосновать следующим образом. Допустим мы хотим перенести x 1 из левой части в правую. Для этого умножим обе части пропорции на 1/x 1:

то есть переменная x 1 у нас переместилась «по диагонали сверху вниз». Перенесем теперь «влево наверх» переменную y 2 . Это достигается умножением на нее обеих частей данного равенства. В результате имеем

числители x 1 и y 1 соотносятся между собой точно так же, как и соответствующие им знаменатели x 2 и y 2 .

Обобщенная теорема Фалеса

Теорема Фалеса, рассмотренная в прошлый раз, допускает следующее обобщение.

Пусть две произвольные прямые x и y пересекаются тремя параллельными прямыми n 1 , n 2 и n 3 в точках X 1 , X 2 , X 3 и Y 1 , Y 2 , Y 3 , как показано на рисунке:

Тогда длины отсекаемых отрезков образуют следующую пропорцию

представляет собой рациональное число, то есть может быть выражено в виде несократимой дроби

|X 1 X 2 |

|X 1 X 3 |

где a и b - некоторые натуральные числа, a < b . Разобьем отрезок X 1 X 3 на b одинаковых частей. (При этом точка X 2 окажется одной из точек деления.) Проведем через каждую точку деления прямые, параллельные n 1 , n 2 и n 3 . (Одна из этих прямых совпадет с прямой n 2 .)

По теореме Фалеса (в ее первоначальном варианте), отрезок Y 1 Y 3 также делится этими прямыми на b равных частей, из которых a частей составляют отрезок Y 1 Y 2 . Следовательно,

|Y 1 Y 2 |

|X 1 X 2 |

|Y 1 Y 3 |

b

|X 1 X 3 |

что и требовалось доказать. Из нашего построения следует также, что

|Y 2 Y 3 |

|X 2 X 3 |

|Y 1 Y 3 |

b

|X 1 X 3 |

|Y 2 Y 3 |

|X 2 X 3 |

|Y 1 Y 2 |

a

|X 1 X 2 |

Пользуясь свойствами пропорций, эти равенства можно переписать в виде одной цепочки:

|Y 1 Y 2 |

|Y 2 Y 3 |

|Y 1 Y 3 |

|X 1 X 2 |

|X 2 X 3 |

|X 1 X 3 |

Таким образом, отрезки отсекаемые на прямой y пропорциональны соответствующим отрезкам на прямой x .

Теоретически возможна также ситуация, когда отношение длин

|X 1 X 2 |

|X 1 X 3 |

не является рациональным числом, поскольку длины отрезков |X 1 X 2 | и |X 1 X 3 | могут, в принципе, выражаться иррациональными числами. Однако на практике такой случай никогда не встречается. Для определения длин отрезков мы всегда пользуемся каким-либо измерительным прибором (например, школьной линейкой), который выдает лишь округленные результаты в виде конечной десятичной дроби.

Важное следствие

Пусть даны несовпадающие прямые x и y , которые пересекаются в точке O, и еще - две параллельные прямые n 1 и n 2 , которые пересекают прямую x в точках X 1 и X 2 и прямую y в точках Y 1 и Y 2 , как показано на рисунке.

Введем обозначения:

x 1 = |OX 1 |, x 2 = |OX 2 |;

y 1 = |OY 1 |, y 2 = |OY 2 |;

z 1 = |X 1 Y 1 |, z 2 = |X 2 Y 2 |.

y 1

y 2

Действительно, оба равенства в этой цепочке непосредственно следует из обобщенной теоремы Фалеса. Для первого равенства это ясно сразу, а для второго это становится очевидным после того, как мы через точку Y 1 проведем прямую m , параллельную прямой x .

Верно и обратное утверждение. Пусть дана та же геометрическая конструкция и известно, что

Тогда прямые n 1 и n 2 параллельны. В самом деле, проведем через точку X 1 вспомогательную прямую, параллельную прямой n 2 . По обобщенной теореме Фалеса, эта вспомогательная прямая проходит через точку Y 1 . Следовательно, она совпадает с прямой n 1 . Таким образом, прямая n 1 параллельна прямой n 2 .

Масштаб

Выйдем на улицу, прихватив с собой лист бумаги и карандаш. Расположим наш лист горизонтально и поставим на нем приблизительно посередине точку O. Из этой точки проведем мысленно лучи в направлении различных примечательных точек на местности, расположенных в радиусе примерно ста метров, - деревьев, столбов, углов зданий и того подобного.

Допустим, у нас есть возможность измерить расстояния до этих примечательных точек. Пусть, например, расстояние до ближайшего дерева равно 10 м. Мысленно отложим от точки O в направлении этого дерева отрезок, длина которого в 1000 раз меньше данного расстояния, и отметим карандашом на бумаге положение второго его конца. Нетрудно рассчитать, что расстояние от точки O до отметки составит 10 м/1000 = 1 см.

Подобным же образом, пусть расстояние до какого-то другого примечательного объекта равно x 1 . Умножим это расстояние на число k , равное 1/1000. Мысленно отложим от точки O отрезок длиной x 2 = kx 1 вдоль луча, направленного на данный объект. В том месте на бумаге, где находится второй конец отрезка, сделаем отметку карандашом. Проделаем такую процедуру со всеми примечательными точками на местности, используя всё время одно и то же значение параметра k . Если какие-либо из этих точек соединены между собой забором или стеной или же чем-то подобным, то между соответствующими метками на бумаге также проведем линии.

В результате на нашем листе бумаги получится карта местности. В силу теоремы Фалеса и свойств пропорций, все соотношения между расстояниями на бумаге будут в точности такими же, как и в действительности. Более того, все линии на бумаге окажутся параллельны соответствующим линиям на местности. Эта параллельность, конечно, нарушится, когда мы унесем наш лист куда-нибудь в другое место, однако углы между линиями сохранятся.

Параметр k , который мы использовали в нашем построении, называется масштабным коэффициентом или просто масштабом . Разумеется, он необязательно должен быть равен 1/1000. Он может, в принципе, принимать любое значение, важно лишь, чтобы это значение оставалось всё время неизменным в процессе построения карты.

На настоящих географических картах масштаб обязательно указывается в легенде, при этом вместо дробной черты обычно используется двоеточие. Например, масштаб 1:100 000 означает, что один сантиметр на карте соответствует 100000 сантиметрам (то есть одному километру) на местности.

Технические чертежи также всегда выполняются, как говорят, в определенном масштабе. Масштаб 1:1 означает, что деталь начерчена в натуральную величину. А масштаб 10:1 говорит о том, что чертеж выполнен с десятикратным увеличением.

Замечание о параллельных прямых

Мы назвали параллельными такие несовпадающие прямые, угол между которыми равен нулю. Мы отметили, что такие прямые нигде не пересекаются. Докажем теперь, что если прямые лежат в одной плоскости и не параллельны (то есть угол между ними отличен от нуля), то тогда они обязательно где-нибудь пересекутся.

Пусть на плоскости даны две прямые - x и n . Отметим на них произвольные точки - O и Y - и проведем через эти точки третью прямую - y . Если исходить из того, что угол между прямыми x и n не равен нулю, то смежные углы должны оказаться не равны друг другу. Пусть для определенности α 1 > α 2 , как показано на рисунке.

Проведем через точку O прямую n 1 , параллельную прямой n . Отметим на ней со стороны угла α 1 произвольную точку N 1 и проведем через эту точку прямую y 1 , параллельную прямой y . При этом образуется параллелограмм, обозначенный на рисунке серым фоном.

Это значит, что прямая y 1 пересекает прямую n в некоторой точке, которую мы обозначим через N . Прямая x , заходя на «территорию» параллелограмма в точке O , обязательно должна где-то оттуда выйти. Она может это сделать либо через отрезок YN , либо через отрезок N 1 N . В первом случае сразу становится очевидно, что прямая x пересекает прямую n . Рассмотрим второй случай. Обозначим точку пересечения прямой x и отрезка N 1 N через X 1 . Проведем через нее прямую n 2 , параллельную прямой n . Эта прямая разбивает параллелограмм ON 1 NY на два новых параллелограмма и пересекает прямую y в некоторой точке Y 1 . Отметим на прямой x такую точку X , для которой выполняется соотношение

|O Y 1 |

Проведем через точки X и Y прямую. Согласно рассмотренному выше следствию из теоремы Фалеса, эта прямая параллельна прямой n 2 , а значит, образует нулевой угол с прямой n . Следовательно, новая прямая совпадает с прямой n , которая, таким образом, пересекает прямую x в точке X .

Мы теперь можем утверждать, что следующие три утверждения о несовпадающих прямых a и b , лежащих в одной плоскости, означают в точности одно и то же:

(1) Угол между прямыми a и b равен нулю.

(2) Прямые a и b нигде не пересекаются.

(3) Прямые a и b параллельны.

В традиционных курсах геометрии определением параллельности прямых служит утверждение 2. Мы выбрали для этих целей утверждение 1. Ведь гораздо проще определить угол между двумя прямыми, чем удостовериться, что они нигде не пересекаются на всём своем бесконечном протяжении.

Конспект

1. Равенство вида x 1 /x 2 = y 1 /y 2 называется пропорцией. Числители пропорциональны знаменателям. Числитель и знаменатель одной дроби соотносятся так же, как числитель и знаменатель другой дроби. Эквивалентное равенство: x 1 /y 1 = x 2 /y 2 .

2. Обобщенная теорема Фалеса . Пусть две произвольные прямые a и b пересекаются тремя параллельными прямыми. Тогда отрезки, отсекаемые на прямой a , пропорциональны соответствующим отрезкам, отсекаемым на прямой b .

3. Следствие 1 . Пусть стороны угла с вершиной в точке O пересекаются двумя параллельными прямыми n 1 и n 2 . Тогда отрезки, отсекаемые на прямых n 1 и n 2 , соотносятся так же, как отрезки, отложенные на любой из сторон угла от точки O до соответствующих точек пересечения с прямыми n 1 и n 2 .

4. Следствие 2 . Пусть на сторонах угла отложены от вершины отрезки таким образом, что отрезки на одной стороне пропорциональны отрезкам на другой. Тогда прямые, проходящие через соответствующие концы этих отрезков, параллельны друг другу.

5. На карте сохраняются все соотношения между расстояниями и все углы. Отношение расстояния между некоторыми двумя точками на карте к расстоянию между соответствующими точками на местности не зависит от выбора точек и называется масштабом.

6. Если угол между двумя прямыми, лежащими в одной плоскости, не равен нулю, то такие прямые обязательно пересекаются.