Основы мыслительных процессов. Когнитивная нейробиология является разделом как психологии , так и нейробиологии , пересекаясь с когнитивной психологией и нейропсихологии .

Когнитивной нейробиология основывается на теориях когнитивных наук в сочетании с доказательствами с нейропсихологии и компьютерного моделирования.

Благодаря своему междисциплинарном характер, когнитивная нейробиология может иметь различное фон. Кроме вышеупомянутых связанных дисциплин, когнитивная неврология может пересекаться с такими дисциплинами: нейробиология, биоинженерия, психиатрия , неврология , физика , информатика , лингвистика , философия и математика .

В когнитивной нейробиологии используются экспериментальные методы психофизиологии , когнитивной психологии, функциональной нейровизуализации, электрофизиологии, психогенетики. Важными аспектом когнитивной нейробиологии является изучение людей, имеющих нарушения психической деятельности вследствие повреждений головного мозга.

Связь строения нейронов с когнитивными способностями подтверждается такими фактами, как увеличение количества и размеров синапсов в мозге крыс в результате их обучения, снижение эффективности передачи нервного импульса по синапсов, наблюдается у людей, пораженных болезнью Альцгеймера .

Одним из первых мыслителей, которые утверждали, что мышление осуществляется в головном мозге, был Гиппократ . В 19 веке такие ученые как Иоганн Петер Мюллер предпринимают попытки изучить функциональную структуру головного мозга в аспекте локализации мыслительных и поведенческих функций в участках головного мозга.


1. Появление новой дисциплины

1.1. Рождение когнитивной науки

11 сентября 1956 состоялась крупномасштабная совещание когнитивисты в . Джордж А. Миллер представил свою работу "Магическое число семь, плюс-минус два" , Ноам Чомски и Ньюэлл и Саймон представили результаты своей работы с информатики . Ульрих Найссер прокомментировал результаты этой встречи в своей книге Когнитивная психология (1967 год). Термин?психология? ослабевает в 1950-х и 1960-х годах, уступая термина "когнитивная наука". Бихевиористы , такие как Миллер, стали ориентироваться на представление речи, а не общее поведение. Предложение Дэвида Марра по иерархического представления памяти заставила многих психологов принять идею, что умственные способности, в том числе алгоритмы , требуют значительной обработки в головном мозге.


1.2. Объединение неврологии и когнитивной науки

До 1980-х годов взаимодействие между неврологией и когнитивной наукой была незначительна. Термин "когнитивная нейробиология" был придуман Джорджем Миллером и Майклом Газзанига "на заднем сиденье такси в Нью-Йорке" . Когнитивная нейробиология заложила теоретическое обоснование в когнитивной науке, которая возникла между 1950 и 1960, с подходами в области экспериментальной психологии, нейропсихологии и нейронауки. Конце 20 века развивались новые технологии, которые сегодня являются основой методологии когнитивной нейробиологии, в том числе транскраниальная магнитная стимуляция (1985) и функциональная магнитно-резонансная томография (1991). Ранее методов, используемых в когнитивной нейробиологии, включали ЭЭГ (ЭЭГ человека - 1920 год) и МЭГ (1968). Иногда когнитивные неврологи использовали другие методы визуализации головного мозга, такие как ПЭТ и ОФЭКТ. Будущей технологии в нейробиологии является редактирование ближней инфракрасной спектроскопии, в которой используется поглощение света для расчета изменений в окси-и дезоксигемоглобину в областях коры. Другие методы включают микронейрографию, электромиографию лица и слежения за глазами.


2. Приемы и методы

2.1. Томография

Структура мозга изучается с помощью компьютерной томографии , магнитно-резонансной томографии , ангиографии . Компьютерная томография и ангиография имеют меньшее разрешение при отображения мозга, чем магнитно-резонансная томография.

Исследование активности зон мозга на основе анализа обмена веществ позволяют осуществить позитрон-эмиссионную томографию и функциональную магнитно-резонансную томографию.


2.2. Электроэнцефалограмма


3. Участки головного мозга и психическая деятельность

3.1. Передний мозг

  • Лобная доля коры больших полушарий - планирование, контроль и выполнение движений (моторная область коры больших полушарий - прецентральной извилины), речь, абстрактное мышление, суждения.
Искусственное стимулирование моторной области коры больших полушарий обусловливает движение соответствующей части тела. Контроль движения части тела контралатерально соответствующей зоны моторной области коры больших полушарий, ответственного за движение этой части тела. Верхние части тела контролируются частями моторной области коры больших полушарий, расположенными ниже. Дальнейшие исследования, проведенные рядом ученых, показали, что различные этапы зрительного восприятия связаны с разной активностью нейронов коры головного мозга. Одна активность соответствует ранним этапам обработки зрительного стимула и стимульной признаки, другая активность соответствует поздним этапам восприятия, характеризующиеся фокальной вниманием, синтезом и интеграцией признаков.

Также темами когнитивной нейробиологии являются:


6. Последние тенденции

Одной из наиболее значимых современных тенденций в когнитивной неврологии в том, что область исследования постепенно расширяется: от локализации области мозга для выполнения конкретных функций в головном мозге взрослого человека с помощью одной технологии исследования расходятся в разных направлениях, таких как мониторинг быстрого сна, машина, способная воспринимать электрическую активность мозга во время сна.

Нейробиология - наука, изучающая устройство, функционирование, развитие, генетику, биохимию, физиологию и патологию нервной системы. Изучение поведения является также разделом нейробиологии, которая всё сильнее проникает в сферы психологии и другие науки. Нервная система, присущая многим живым существам, представляет особенный интерес для науки ввиду ее возможного улучшения, сложной схемы работы и прямого влияния на жизнь людей. Прорывы в сфере нейробиологии позволят нам решить проблемы старения, психологических расстройств, душевных болезней, работы мозга и многого другого: в том числе и заглянуть в тайны работы нервной системы человека.

Хирургическая операция на мозге - крайне сложный процесс, в ходе которого пациентам иногда важно оставаться в сознании. Это необходимо, чтобы хирург в любое время мог заговорить с человеком и убедиться в правильной работе его языковых, сенсорных и эмоциональных функций. Разумеется, в это очень тревожное и неприятное время пациент может запаниковать, поэтому ученые постоянно ищут наиболее безопасный метод их успокаивания. Недавно выяснилось, что унять панику пациентов можно стимулированием особого участка мозга, отвечающего за смех и эйфорию.

Экология сознания: Жизнь. Совершенно точно доказано, что наш мозг - дико пластичная штука, и индивидуальное обучение серьезно на него влияет - в значительно большей степени, чем врожденные предрасположенности.

Если сравнивать с детенышами других животных, можно сказать, что человек рождается с недоразвитым мозгом: его масса у новорожденного составляет всего 30% массы мозга взрослого. Эволюционные биологи предполагают, что мы должны рождаться недоношенными, чтобы наш мозг развивался, взаимодействуя с внешней средой. Научный журналист Ася Казанцева в лекции «Зачем мозгу учиться?» в рамках программы «Арт-образование 17/18» рассказала

О процессе обучения с точки зрения нейробиологии

и объяснила, как мозг меняется под влиянием опыта, а также чем во время учебы полезны сон и лень.

Кто изучает феномен обучения

Вопросом, зачем мозгу учиться, занимаются как минимум две важные науки - нейробиология и экспериментальная психология. Нейробиология, изучающая нервную систему и происходящее в мозге на уровне нейронов в момент обучения, работает чаще всего не с людьми, а с крысами, улиточками и червячками. Специалисты по экспериментальной психологии пытаются понять, какие вещи влияют на обучаемость человека: например, дают ему важное задание, проверяющее его память или обучаемость, и смотрят, как он с ним справляется. Эти науки интенсивно развивались в последние годы.

Если смотреть на обучение с точки зрения экспериментальной психологии, то полезно вспомнить, что эта наука - наследница бихевиоризма, а бихевиористы считали, что мозг - черный ящик, и их принципиально не интересовало, что в нем происходит. Они воспринимали мозг как систему, на которую можно воздействовать стимулами, после чего в ней случается какая-то магия, и она определенным образом на эти стимулы реагирует. Бихевиористов интересовало, как может выглядеть эта реакция и что на нее способно влиять. Они считали, что обучение - это изменение поведения в результате освоения новой информации

Это определение до сих пор широко применяется в когнитивных науках. Скажем, если студенту дали почитать Канта и он запомнил, что есть «звездное небо над головой и моральный закон во мне», озвучил это на экзамене и ему поставили пятерку, значит, произошло обучение.

С другой стороны, такое же определение применимо и к поведению морского зайца (аплизии). Нейробиологи часто ставят опыты с этим моллюском. Если бить аплизию током в хвостик, она начинает бояться окружающей реальности и втягивать жабры в ответ на слабые стимулы, которых она раньше не боялась. Таким образом, у нее тоже происходит изменение поведения, обучение. Это определение можно применять и к еще более простым биологическим системам. Представим себе систему из двух нейронов, соединенных одним контактом. Если мы подадим на нее два слабых импульса тока, то в ней временно изменится проводимость и одному нейрону станет легче подавать сигналы другому. Это тоже обучение на уровне этой маленькой биологической системы. Таким образом, от обучения, которое мы наблюдаем во внешней реальности, можно построить мостик к тому, что происходит в мозге. В нем есть нейроны, изменения в которых влияют на нашу реакцию на среду, т. е. на произошедшее обучение.

Как работает мозг

Но чтобы говорить о мозге, нужно иметь базовое представление о его работе. В конце концов, у каждого из нас в голове есть эти полтора килограмма нервной ткани. Мозг состоит из 86 миллиардов нервных клеток, или нейронов. У типичного нейрона есть тело клетки со множеством отростков. Часть отростков - дендриты, которые собирают информацию и передают ее на нейрон. А один длинный отросток, аксон, передает ее следующим клеткам. Под передачей информации в рамках одной нервной клетки подразумевается электрический импульс, который идет по отростку, как по проводу. Один нейрон взаимодействует с другим через место контакта, которое называется «синапс», сигнал идет с помощью химических веществ. Электрический импульс приводит к высвобождению молекул - нейромедиаторов: серотонина, дофамина, эндорфинов. Они просачиваются через синаптическую щель, воздействуют на рецепторы следующего нейрона, и он изменяет свое функциональное состояние - например, у него на мембране открываются каналы, через которые начинают проходить ионы натрия, хлора, кальция, калия и т. д. Это приводит к тому, что на нем, в свою очередь, тоже формируется разность потенциалов, и электрический сигнал идет дальше, на следующую клетку.

Но когда клетка передает сигнал другой клетке, этого чаще всего недостаточно для каких-то заметных изменений в поведении, ведь один сигнал может получиться и случайно из-за каких-то возмущений в системе. Для обмена информацией клетки передают друг другу много сигналов. Главный кодирующий параметр в мозге - это частота импульсов: когда одна клетка хочет что-то передать другой клетке, она начинает посылать сотни сигналов в секунду. Кстати, ранние исследовательские механизмы 1960–70-х годов формировали звуковой сигнал. В мозг экспериментальному животному вживляли электрод, и по скорости треска пулемета, который слышался в лаборатории, можно было понять, насколько активен нейрон.

Система кодирования с помощью частоты импульсов работает на разных уровнях передачи информации - даже на уровне простых зрительных сигналов. У нас на сетчатке есть колбочки, которые реагируют на разные длины волн: короткие (в школьном учебнике они называются синие), средние (зеленые) и длинные (красные). Когда на сетчатку поступает волна света определенной длины, разные колбочки возбуждаются в разной степени. И если волна длинная, то красная колбочка начинает интенсивно подавать сигнал в мозг, чтобы вы поняли, что цвет красный. Впрочем, тут все не так просто: у колбочек перекрывается спектр чувствительности, и зеленая тоже делает вид, что она что-то такое увидела. Дальше мозг самостоятельно это анализирует.

Как мозг принимает решения

Принципы, аналогичные тем, что используются в современных механических исследованиях и опытах на животных с вживленными электродами, можно применять и к гораздо более сложным поведенческим актам. Например, в мозге есть так называемый центр удовольствия - прилежащее ядро. Чем более активна эта область, тем сильнее испытуемому нравится то, что он видит, и выше вероятность, что он захочет это купить или, например, съесть. Эксперименты с томографом показывают, что по определенной активности прилежащего ядра можно еще до того, как человек озвучит свое решение, допустим, относительно покупки кофточки, сказать, будет он ее покупать или нет. Как говорит прекрасный нейробиолог Василий Ключарев, мы делаем все, чтобы понравиться нашим нейронам в прилежащем ядре.

Сложность в том, что у нас в мозге нет единства суждений, каждый отдел может иметь свое мнение о происходящем. История, похожая на спор колбочек в сетчатке, повторяется и с более сложными вещами. Допустим, вы увидели кофточку, она вам понравилась, и ваше прилежащее ядро издает сигналы. С другой стороны, эта кофточка стоит 9 тысяч рублей, а зарплата еще через неделю - и тогда ваша амигдала, или миндалевидное тело (центр, связанный в первую очередь с негативными эмоциями), начинает издавать свои электрические импульсы: «Слушай, остается мало денег. Если мы сейчас купим эту кофточку, у нас будут проблемы». Лобная кора принимает решение в зависимости от того, кто громче орет - прилежащее ядро или амигдала. И тут еще важно, что каждый раз впоследствии мы способны проанализировать последствия, к которым это решение привело. Дело в том, что лобная кора общается и с амигдалой, и с прилежащим ядром, и с отделами мозга, связанными с памятью: они ей рассказывают, что произошло после того, как в прошлый раз мы принимали такое решение. В зависимости от этого лобная кора может более внимательно отнестись к тому, что говорят ей амигдала и прилежащее ядро. Так мозг способен меняться под влиянием опыта.

Почему мы рождаемся с маленьким мозгом

Все человеческие дети рождаются недоразвитыми, буквально недоношенными в сравнении с детенышами любого другого вида. Ни у одного животного нет настолько длинного детства, как у человека, и у них не бывает потомства, которое рождалось бы с настолько маленьким мозгом относительно массы мозга взрослого: у человеческого новорожденного она составляет лишь 30%.

Все исследователи сходятся во мнении, что мы вынуждены рождать человека незрелым из-за внушительного размера его мозга. Классическое объяснение - это акушерская дилемма, то есть история конфликта между прямохождением и большой головой. Чтобы родить детеныша с такой головой и крупным мозгом, нужно иметь широкие бедра, но невозможно их бесконечно расширять, потому что это будет мешать ходить. По подсчетам антрополога Холли Дансуорт, чтобы рожать более зрелых детей, достаточно было бы увеличить ширину родового канала всего на три сантиметра, но эволюция все равно в какой-то момент остановила расширение бедер. Эволюционные биологи предположили: вероятно, мы и должны рождаться недоношенными, чтобы наш мозг развивался во взаимодействии с внешней средой, ведь в матке в целом довольно мало стимулов.

Есть знаменитое исследование Блэкмора и Купера. Они в 70-е годы проводили опыты с котятами: большую часть времени держали их в темноте и на пять часов в день сажали в освещенный цилиндр, где они получали не совсем обычную картину мира. Одна группа котят в течение нескольких месяцев видела только горизонтальные полосы, а другая - только вертикальные. В итоге у котят возникли большие проблемы с восприятием реальности. Одни врезались в ножки стульев, потому что не видели вертикальных линий, другие таким же образом игнорировали горизонтальные - например, не понимали, что у стола есть край. С ними проводили тесты, играли с помощью палочки. Если котенок рос среди горизонтальных линий, то горизонтальную палочку он видит и ловит, а вертикальную просто не замечает. Затем вживляли электроды в кору головного мозга котят и смотрели, каким должен быть наклон палочки, чтобы нейроны начали издавать сигналы. Важно, что со взрослым котом во время такого эксперимента ничего бы не случилось, а вот мир маленького котенка, чей мозг только учится воспринимать информацию, вследствие подобного опыта может быть навсегда искажен. Нейроны, которые никогда не подвергались воздействию, перестают функционировать.

Мы привыкли считать, что чем больше связей между разными нейронами, отделами человеческого мозга, тем лучше. Это так, но с определенными оговорками. Нужно не просто чтобы связей было много, а чтобы они имели какое-то отношение к реальной жизни. У полуторагодовалого ребенка синапсов, то есть контактов между нейронами в мозге, гораздо больше, чем у профессора Гарварда или Оксфорда. Проблема в том, что эти нейроны связаны хаотично. В раннем возрасте мозг быстро созревает, и его клетки формируют десятки тысяч синапсов между всем и всем. Каждый нейрон раскидывает отростки во все стороны, и они цепляются за все, до чего смогли дотянуться. Но дальше начинает работать принцип «Используй, или потеряешь». Мозг живет в окружающей среде и пытается справляться с разными задачами: ребенка учат координировать движения, хватать погремушку и т. д. Когда ему показывают, как есть ложкой, у него в коре остаются связи, полезные, чтобы есть ложкой, так как именно через них он гонял нервные импульсы. А связи, которые отвечают за то, чтобы расшвыривать кашу по всей комнате, становятся менее выраженными, потому что родители такие действия не поощряют.

Процессы роста синапсов довольно хорошо изучены на молекулярном уровне. Эрику Канделу дали Нобелевскую премию за то, что он догадался изучать память не на людях. У человека 86 миллиардов нейронов, и, пока ученый разобрался бы в этих нейронах, ему пришлось бы извести сотни испытуемых. А поскольку никто не позволяет вскрывать мозги стольким людям ради того, чтобы посмотреть, как они научились держать ложку, Кандел придумал работать с улиточками. Аплизия - суперудобная система: с ней можно работать, изучив всего четыре нейрона. На самом деле у этого моллюска больше нейронов, но на его примере гораздо проще выявить системы, связанные с обучением и памятью. В ходе экспериментов Кандел понял, что кратковременная память - это временное усиление проводимости уже существующих синапсов, а долговременная заключается в росте новых синаптических связей.

Это оказалось применимо и к человеку - похоже на то, как мы ходим по траве . Сначала нам все равно, куда идти на поле, но постепенно мы протаптываем тропинку, которая потом превращается в грунтовую дорогу, а затем в асфальтированную улицу и трехполосное шоссе с фонарями. Похожим образом нервные импульсы протаптывают себе дорожки в мозге.

Как формируются ассоциации

Наш мозг так устроен: он формирует связи между событиями, происходящими одновременно. Обычно при передаче нервного импульса выделяются нейромедиаторы, которые воздействуют на рецептор, и электрический импульс идет на следующий нейрон. Но есть один рецептор, который работает не так, он называется NMDA. Это один из ключевых рецепторов для формирования памяти на молекулярном уровне. Его особенность в том, что он работает в том случае, если сигнал пришел с обеих сторон одновременно.

Все нейроны куда-то ведут. Один может привести в большую нейронную сеть, которая связана со звучанием модной песенки в кафе. А другие - в другую сеть, связанную с тем, что вы пошли на свидание. Мозг заточен на то, чтобы связывать причину и следствие, он на анатомическом уровне способен запомнить, что между песней и свиданием есть связь. Рецептор активируется и пропускает через себя кальций. Он начинает вступать в огромное количество молекулярных каскадов, которые приводят к работе некоторых до этого не работавших генов. Эти гены проводят синтез новых белков, и вырастает еще один синапс. Так связь между нейронной сетью, отвечающей за песенку, и сетью, отвечающей за свидание, становится более прочной. Теперь даже слабого сигнала достаточно, чтобы пошел нервный импульс и у вас сформировалась ассоциация.

Как обучение влияет на мозг

Есть знаменитая история о лондонских таксистах. Не знаю, как сейчас, но буквально несколько лет назад для того, чтобы стать настоящим таксистом в Лондоне, нужно было сдать экзамен по ориентации в городе без навигатора - то есть знать как минимум две с половиной тысячи улиц, одностороннее движение, дорожные знаки, запреты на остановку, а также уметь выстроить оптимальный маршрут. Поэтому, чтобы стать лондонским таксистом, люди несколько месяцев ходили на курсы. Исследователи набрали три группы людей. Одна группа - поступившие на курсы, чтобы стать таксистами. Вторая группа - те, кто тоже ходил на курсы, но бросил обучение. А люди из третьей группы вообще не думали становиться таксистами. Всем трем группам ученые сделали томограмму, чтобы посмотреть плотность серого вещества в гиппокампе. Это важная зона мозга, связанная с формированием памяти и пространственным мышлением. Обнаружилось, что если человек не хотел становиться таксистом или хотел, но не стал, то плотность серого вещества в его гиппокампе оставалась прежней. А вот если он хотел стать таксистом, прошел тренинг и действительно овладел новой профессией, то плотность серого вещества увеличилась на треть - это очень много.

И хотя до конца не ясно, где причина, а где следствие (то ли люди действительно овладели новым навыком, то ли у них изначально была хорошо развита эта область мозга и поэтому им было легко научиться), совершенно точно наш мозг - дико пластичная штука, и индивидуальное обучение серьезно на него влияет - в значительно большей степени, чем врожденные предрасположенности. Важно, что и в 60 лет обучение оказывает воздействие на мозг. Конечно, не так эффективно и быстро, как в 20, но целом мозг в течение всей жизни сохраняет некоторую способность к пластичности.

Зачем мозгу лениться и спать

Когда мозг чему-то учится, он выращивает новые связи между нейронами. А это процесс медленный и дорогостоящий, на него нужно тратить много калорий, сахара, кислорода, энергии. Вообще, человеческий мозг, притом что его вес составляет всего 2% от веса всего тела, потребляет около 20% всей энергии, которую мы получаем. Поэтому при любой возможности он старается ничему не учиться, не тратить энергию. На самом деле это очень мило с его стороны, ведь если бы мы запоминали все, что видим каждый день, то мы довольно быстро сошли бы с ума.

В обучении, с точки зрения мозга, есть два принципиально важных момента. Первый заключается в том, что, когда мы осваиваем любой навык, нам становится легче действовать правильно, чем неправильно. Например, вы учитесь водить машину с механической коробкой передач, и вам сначала все равно, переключать передачу с первой на вторую или с первой на четвертую. Для вашей руки и мозга все эти движения равновероятны; вам неважно, в какую сторону гнать нервные импульсы. А когда вы уже более опытный водитель, то вам физически проще переключать передачи правильно. Если вы попадете в машину с принципиально другой конструкцией, вам снова придется задумываться и контролировать усилием воли, чтобы импульс не пошел по проторенной дорожке.

Второй важный момент:

главное в обучении - это сон

У него много функций: поддержание здоровья, иммунитета, обмена веществ и разных сторон работы мозга. Но все нейробиологи сходятся в том, что самая главная функция сна - это работа с информацией и обучением. Когда мы освоили какой-то навык, то хотим сформировать долговременную память. Новые синапсы растут несколько часов, это долгий процесс, и мозгу удобнее всего это делать именно тогда, когда вы ничем не заняты. Во время сна мозг обрабатывает информацию, полученную за день, и стирает то, что из этого надо забыть.

Есть эксперимент с крысами, где их учили ходить по лабиринту с вживленными в мозг электродами и обнаружили, что во сне они повторяли свой путь по лабиринту, а на следующий день ходили по нему лучше. Во многих тестах на людях показано, что то, что мы выучили перед сном, вспомнится лучше, чем выученное с утра. Выходит, что студенты, которые принимаются за подготовку к экзамену где-то ближе к полуночи, все делают правильно. По той же причине важно думать о проблемах перед сном. Конечно, заснуть будет сложнее, но мы загрузим вопрос в мозг, и, может быть, наутро придет какое-то решение. Кстати, сновидения - это, скорее всего, просто побочный эффект обработки информации.

Как обучение зависит от эмоций

Обучение в большой степени зависит от внимания , потому что оно направлено на то, чтобы снова и снова прогонять импульсы по конкретным путям нейронной сети. Из огромного количества информации мы на чем-то фокусируемся, берем это в рабочую память. Дальше то, на чем мы удерживаем внимание, попадает уже в память долговременную. Вы могли понять всю мою лекцию, но это не означает, что вам будет легко ее пересказать. А если вы прямо сейчас на листке бумаги нарисуете велосипед, то это не значит, что он будет хорошо ездить. Люди склонны забывать важные детали, особенно если они не специалисты по велосипедам.

У детей всегда были проблемы с вниманием. Но сейчас в этом смысле все становится проще. В современном обществе уже не так нужны конкретные фактические знания - просто их стало невероятно много. Гораздо важнее оказывается способность быстро ориентироваться в информации, отличать достоверные источники от недостоверных. Нам уже почти и не нужно долго концентрироваться на одном и том же и запоминать большие объемы информации - важнее быстро переключаться. Кроме того, сейчас появляется все больше профессий как раз для людей, которым сложнее концентрироваться.

Есть еще один важный фактор, влияющий на обучение, - эмоции. На самом деле это вообще главное, что у нас было на протяжении многих миллионов лет эволюции, еще до того, как мы нарастили всю эту огромную лобную кору. Ценность овладения тем или иным навыком мы оцениваем с точки зрения того, радует он нас или нет. Поэтому здорово, если удается наши базовые биологические эмоциональные механизмы вовлекать в обучение. Например, выстраивать такую систему мотивации, в которой лобная кора не думает о том, что мы должны выучить что-то с помощью усидчивости и целенаправленности, а в которой прилежащее ядро говорит, что ему просто чертовски нравится это занятие.

Сегодня знания о мозге развиваются с воодушевляющими темпами, и физиотерапевт и нейробиолог Лара Бойд находится на передовой этих открытий. С 2006 года она работает в Университете Британской Колумбии, где занимается научными исследованиями в области нейробиологии и усвоения двигательных навыков. С тех пор она создала лабораторию Brain Behaviour Lab, набрала и обучила более 40 аспирантов, опубликовала более 80 статей и получила более 5 миллионов долларов в виде финансирования.

Труды Лары Бойд приводят к разработке новых, более эффективных методов лечения людей с повреждениями мозга, а также находят более широкое применение. Например, они объясняют, почему одни дети расцветают в рамках традиционного образования, а другие – нет, как поведение служит главным двигателем изменений в мозге, и почему не существует нейропластических таблеток.

Лара Бойд: Это видео изменит ваш мозг (ниже стенограмма):

Итак, как мы учимся? И почему одним учёба даётся легче, чем другим? Как я уже говорила, я – доктор Лара Бойд, занимаюсь исследованием головного мозга здесь, в Университете Британской Колумбии, и эти вопросы не дают мне покоя.

Изучение мозговой деятельности открывает перспективы как для понимания физиологии человека, так и для осмысления вопроса: что же делает нас теми, кто мы есть?

Для исследователей мозга наступило удивительное время и, бьюсь об заклад, у меня самая интересная работа на свете. Наши представления о мозге меняются с головокружительной скоростью. Многие из них оказались неверными или неполными. Некоторые заблуждения более очевидны, например, мы полагали, что мозг способен меняться только в детстве, а теперь выяснилось, что это полнейшая ерунда.

Неверно также считать, что человек обычно использует лишь некоторые отделы мозга, а когда ничем не занят, его мозг тоже бездействует. Это тоже вовсе не так. Оказывается, даже когда мы отдыхаем и ни о чём не думаем, мозг проявляет высокую активность. Технологии вроде МРТ позволили нам сделать эти и многие другие важные открытия. А самым захватывающим, интересным и революционным открытием, пожалуй, было то, что каждый раз, приобретая новые знания или навык, ты изменяешь свой мозг. Это называется нейропластичностью.

Ещё пару лет назад считалось, что после полового созревания мозг может меняться только к худшему, клетки гибнут с возрастом или от повреждений, например, от инсульта. Однако исследования выявили поразительное количество примеров преобразования мозга взрослых. Затем выяснилось, что на изменения в мозге влияет наше поведение. И эти изменения не зависят от возраста. Хорошая новость. На самом деле они происходят всю жизнь и – что очень важно – реорганизационные процессы способствуют восстановлению мозга после повреждений.

Нейропластичность – ключ ко всем изменениям. Что это такое? Чтобы закрепить полученную информацию, мозг меняется в трёх направлениях:

1. Химический. Фактически работа мозга – это передача химических сигналов между его клетками, которые называются нейронами, что вызывает серии реакций. А чтобы полученные знания сохранялись, мозг увеличивает количество или концентрацию химических сигналов, которыми обмениваются нейроны. Поскольку такие изменения происходят быстро, они способствуют кратковременной памяти или краткосрочному улучшению моторной функции.

2. Второй способ изменения мозга для закрепления обучения – структурный. То есть, обучаясь, мозг изменяет соединение между нейронами, происходит изменение физической структуры мозга, что, конечно, занимает больше времени. Эти перемены связаны с долговременной памятью и долгосрочным улучшением моторных навыков.

Эти процессы взаимосвязаны. Приведу пример. Все мы когда-то учились новому моторному навыку, например, играть на пианино или жонглировать. И во время одной попытки оно давалось вам всё лучше и лучше, и вы думали: у меня получилось. А в следующий раз, может, уже на другой день, все достижения терялись. Почему так? На короткое время мозг повысил интенсивность обмена химическими сигналами, однако почему-то эти изменения не вызвали структурных преобразований, необходимых для долговременной памяти. Помните, сохранение воспоминаний в долговременную память – процесс не сиюминутный. Краткосрочный результат – это ещё не обучение. Физические изменения закрепляют долговременные воспоминания. А химические изменения – кратковременные.

Структурные изменения также могут привести к созданию сетей, соединяющих разные области мозга для закрепления обучения. Отдельные области мозга, отвечающие за особое поведение, при этом могут увеличиваться или менять структуру. Несколько примеров. У людей, читающих шрифт Брайля, увеличена сенсорная зона мозга, отвечающая за чувствительность пальцев. Если вы правша, область мозга, отвечающая за вашу ведущую руку, у вас больше, чем та, что справа. Исследования показали, что у водителей такси, заполнивших для получения лицензии карту Лондона, увеличены области мозга, отвечающие за пространственные или картографические воспоминания.

3. И последний способ изменения мозга для закрепления информации – функциональный.
Использованная область мозга становится чувствительной и её легче задействовать снова. А с появлением в мозге областей с повышенной возбуждаемостью он уже регулирует, как и когда их активировать.

В процессе обучения мы видим, как целые блоки мозга активизируются и изменяются. Таким образом, химические, структурные и функциональные изменения поддерживают нейропластичность. А происходят они по всему мозгу. Могут происходить и по отдельности, но чаще всего они взаимосвязаны. Вместе они закрепляют результат обучения, и так происходит постоянно.

Итак, я рассказала вам, насколько изумительно нейропластичен наш мозг. Почему же научиться чему-то непросто? Почему дети не всегда успевают в школе? Почему, старея, мы становимся забывчивее? И почему не можем полностью восстановиться после повреждений мозга? Какие процессы помогаю или мешают нейропластичности? Это я и изучаю. В частности я исследую, как она связана с восстановлением после инсульта.

Недавно инсульт сместился с третьего на четвёртое место в списке основных причин смертности в США. Отличные новости, да? Только на самом деле число инсультников не уменьшилось. Просто у нас стало лучше получаться поддерживать жизнь после тяжёлого инсульта. Оказалось, трудно помочь мозгу оправиться от инсульта и, если честно, у нас не получилось разработать эффективный способ реабилитации. Точно известно одно: инсульт – главная причина инвалидности у взрослых всего мира.

Всё более молодые люди страдают от инсульта, а значит – дольше живут с инвалидностью. И наши исследования показывают, что качество жизни канадцев, перенёсших инсульт, снизилось. Поэтому ясно, что нужно лучше работать, чтобы помочь людям оправиться от инсульта. Это серьёзная социальная проблема и мы не можем её решить.

Что же можно сделать? Ясно одно: главный двигатель нейропластичных изменений – ваше поведение. Проблема в том, что для получения новых моторных навыков или для восстановления старых требуется много практики, вашей активности. А обеспечить достаточно активной практики – непросто и вдобавок стоит недёшево. Поэтому мой исследовательский подход заключается в разработке методов лечения, подготавливающих мозги к обучению. Среди них стимулирование мозга, упражнения и робототехника.

Исследования дали мне понять, что главное препятствие для разработки методов лечения, ускоряющих восстановление после инсульта, в разнообразии моделей нейропластичности у людей. И это разнообразие меня как исследователя сводит с ума, крайне усложняет использование статистики для тестирования данных и идей. Вот почему медицинские исследования разработаны так, чтобы минимизировать различие. Мои же исследования выявили это разнообразие в наиболее важных, самых информативных данных, собранных нами.

Исследуя мозг после инсульта, мы многому научились, и, я думаю, эти уроки полезны в других областях. Первый урок в том, что основной двигатель изменений в мозге – это поведение. И поэтому не существует нейропластических таблеток. Ничто не поможет вам в учении так, как практика. А значит работать вам всё-таки придётся. Более того, мои исследования доказали, что большая сложность, больше напряжения во время практики приводит к лучшему обучению и большим структурным изменениям в мозге.

Проблема в том, что нейропластичность – палка о двух концах. Она несёт положительный эффект, когда учишь что-то новое или оттачиваешь моторный навык, и отрицательный, когда забываешь то, что знал, подсаживаешься на наркотики, возможно, из-за хронических болей. Итак, мозг чрезвычайно пластичен и всё, что вы делаете, как и всё, что не делаете, формирует его как структурно, так и функционально.

Второй урок, который мы усвоили, состоит в том, что не существует единого подхода к обучению, так что нет рецепта, как нужно учиться. Например, многие верят, что требуются часы тренировок, чтобы усвоить новый моторный навык. Уверяю, всё не так просто. Некоторым потребуется больше практики, а другим – гораздо меньше.

Работа над нашими пластичными мозгами – слишком уникальный труд, чтобы был единый подход, работающий для всех. Осознав это, мы пришли к идее индивидуального лечения. То есть для получения оптимальных результатов каждый человек требует применения своих собственных мер. Эта мысль на самом деле пришла из опыта лечения рака. Тогда выяснилось, что генетика очень важна для выбора типа химиотерапии при лечении определённой формы рака. Мои исследования показали, что этот подход применим и к восстановлению после инсульта.

Существуют определённые характеристики структуры и функции мозга, биомаркеры. Они очень полезны и помогают подбирать терапию индивидуально. Результаты моей лаборатории доказывают, что определённые комбинации биомаркеров могут предсказывать нейропластические изменения и модели выздоровления после инсульта, что неудивительно, учитывая, насколько сложен человеческий мозг.

Однако я также думаю, что эту концепцию можно рассматривать гораздо шире. С учётом уникальности структуры и функций мозга то, что мы узнали о нейропластичности после инсульта, применимо ко всем. Поведение в повседневной жизни очень важно. Оно влияет на мозг.

Я считаю, что мы должны рассмотреть не только индивидуальное лечение, но и индивидуальное обучение. Уникальность мозга проявляется у человека, когда он учит и когда он учится. Эта идея помогла нам понять, почему одни дети расцветают в рамках традиционного образования, а другие – нет. Почему одним легко даются языки, а другие выбирают любой вид спорта и справляются лучше всех. Так что, когда вы сегодня покинете этот зал, ваш мозг уже не будет таким, каким был утром, когда вы вошли. И я думаю, это просто удивительно. Но мозг каждого из вас изменится по-своему.

Понимание этих различий, этих личных моделей, этого разнообразия изменений позволит добиться значительного прогресса в области неврологии. Позволит разрабатывать новые, более эффективные меры, помогающие находить подходящих друг другу учеников и учителей, пациентов и методы лечения.

И это относится не только к восстановлению после инсульта, но и к каждому из нас как родителю, учителю, руководителю, а также, раз уж вы сегодня здесь, на конференции TEDx, как вечному ученику.

Узнайте, как и чему вы учитесь эффективнее всего. Повторяйте то, что полезно для мозгов и отбрасывайте вредные привычки и неэффективное поведение. Практикуйтесь. Обучение – это работа, нужная вашему мозгу. Так что лучшая стратегия для каждого своя. Знаете, даже для одного человека в отношении разных навыков эти стратегии могут отличаться. Учиться музыке может оказаться легко, а кататься на сноуборде – гораздо сложнее.

Я надеюсь, что сегодня вы уйдёте с новым пониманием того, насколько великолепен ваш мозг. Окружающий мир постоянно формирует вас и ваш пластичный мозг. Поймите, ваш мозг меняется благодаря тому, что вы делаете, с чем сталкиваетесь и всему, что испытываете. Это может быть к лучшему, но может и к худшему. Поэтому уже сегодня идите и делайте свой мозг таким, каким вы хотите. Большое спасибо.

Нейробиологи, нейрофизиологи, нейролингвисты, нейропсихологи — среди этих ученых есть те, кто не только изучает мозг, но и пишет об этом книги. Мы собрали для вас самые лучшие. Каждая из этих книг стала сенсацией. В каждой — необычные исследования и поражающие воображение выводы. Читайте и удивляйтесь.

Сьюзан Вайншенк — известный американский ученый, специализирующийся на поведенческой психологии. Ее называют «Леди Мозг», поскольку она изучает последние достижения в области неврологии и человеческого мозга и применяет полученные знания в бизнесе и повседневной жизни. В своей книге Сьюзан рассказывает об основных законах работы мозга и психики. Она выделяет 7 главных мотиваторов человеческого поведения, которые определяют нашу жизнь. Если знать эти законы и мотиваторы, а также приемы, которые их запускают, то можно влиять на поведение любых людей. Подробнее об этом в обзоре по книге «Законы влияния», представленном в Библиотеке «Главная мысль». вы можете скачать на нашем сайте бесплатно.

Дэвида Льюиса называют отцом нейромаркетинга. Начиная с 1980-х годов он проводил исследования электрических реакций мозга на разные виды рекламы, выявляя принципы мыслительной деятельности покупателей, которые можно применить в продажах. Более тридцати лет темой нейробиологических исследований Дэвида Льюиса была уязвимость мозга человека и различные методы воздействия на него. «Я прикреплял электроды к головам добровольцев, чтобы фиксировать электрическую активность их мозга во время просмотра телевизионных рекламных роликов. Брал образцы слюны на анализ, отслеживал с помощью специальных приборов движения глаз и малейшие изменения мимики. Те первые исследования вылились в то, что стало многомиллиардной индустрией нейромаркетинга», - говорит он. Одно из первых открытий, которое сделал Льюис, состояло в том, что человек, идя в магазин, далеко не всегда преследует своей целью выгодную покупку. Часто таким образом люди борются с депрессией, поднимают себе настроение, повышают собственный престиж, удовлетворяют любопытство, уничтожают скуку. Шопинг превратился в развлечение и одновременно терапию для миллионов людей. А для корпораций в условиях колоссальной конкуренции задачей номер один стало изучение процессов, происходящих в голове покупателя. Почему человек делает выбор из миллиона аналоговых продуктов в пользу конкретного бренда? Об этом по этой книге, представленном в Библиотеке «Главная мысль».

Доктор медицины Норман Дойдж посвятил свои исследования пластичности мозга. В своем главном труде он делает революционное заявление: наш мозг способен менять собственную структуру и работу благодаря мыслям и действиям человека. Дойдж рассказывает о последних открытиях, доказывающих, что человеческий мозг пластичен, а значит, способен самоизменяться. В книге представлены истории об ученых, врачах и пациентах, которые смогли добиться удивительных трансформаций. Тем, у кого были серьезные проблемы, удалось без операций и таблеток вылечить заболевания мозга, считавшиеся неизлечимыми. Ну а те, у кого не было особых проблем, смогли значительно улучшить работу своего мозга. Подробнее , представленном в Библиотеке «Главная мысль».

Келли Макгонигал — профессор Стэнфордского университета, нейрофизиолог, доктор философии, психолог, ведущий эксперт в области изучения взаимосвязи между психическим и физическим состояниями человека. Ее учебные курсы «Наука силы воли», «Наука сострадания» и другие удостоены множества наград. Книги Макгонигал переведены и изданы в десятках стран мира, они популярным языком рассказывают о том, как использовать достижения в области психологии и нейрофизиологии, чтобы сделать человека более счастливым и успешным. Эта книга посвящена проблеме нехватки силы воли. Кто из нас не обещал себе похудеть, перестать объедаться, бросить курить, начать ходить в спортзал с понедельника, покончить с опозданиями или слишком затратным шопингом? Но каждый раз эти слабости брали над нами верх, снабжая еще и чувством вины и собственной никчемности. Есть ли выход из этого замкнутого круга? Да, есть! Келли Макгонигал убеждена, что наука может нам помочь натренировать силу воли. Об этом по этой книге, представленном в Библиотеке «Главная мысль».

Джон Медина — известный молекулярный биолог, занимающийся изучением генов, которые участвуют в развитии мозга, и генетикой психических расстройств. Медина - профессор биоинженерии Вашингтонского университета, руководитель Центра исследований мозга при Тихоокеанском университете Сиэтла. Одновременно с активной научной деятельностью Джон Медина на протяжении многих лет является консультантом различных биологических и фармацевтических компаний, занимается литературным творчеством — он автор 6 научно-популярных книг по биологии. Итогом многолетних исследований Медины стала концепция, описывающая 12 «правил мозга», которая и нашла отражение в этой книге. , представленном в Библиотеке «Главная мысль», мы познакомим вас с концепцией ученого.

Андре Алеман — профессор Университета Гронингена, занимающийся когнитивной нейропсихологией, много лет изучает процессы старения мозга. В своей книге Алеман задаётся вопросом, от чего зависит сохранность функций мозга в старости, несмотря на естественные биологические процессы. В книге он рассказывает, как защититься от необратимых изменений и обеспечить себе хорошее качество жизни в любом возрасте. Многое зависит от того, что вы знаете о работе мозга и какие привычки вырабатываете в течение жизни. Скажем, последние нейрофизиологические исследования доказывают, что в зрелом мозге продолжают рождаться нейроны, однако если мозг «отдыхает» и не учится новому, то они быстро погибают.