Нормальная жизнедеятельность клеток организма возможна только при условии постоянства его внутренней среды. Истинной внутренней средой организма является межклеточная (интерстициальная) жидкость, которая непосредственно контактирует с клетками. Однако постоянство межклеточной жидкости во многом определяется составом крови и лимфы, поэтому в широком понимании внутренней среды в ее состав включают: межклеточную жидкость, кровь и лимфу, спиномозговую, суставную и плевральную жидкость . Между , межклеточной жидкостью и лимфой осуществляется постоянный обмен, направленный на обеспечение непрерывного поступления к клеткам необходимых веществ и удаление оттуда продуктов их жизнедеятельности.

Постоянство химического состава и физико-химических свойств внутренней среды называют гомеостазом.

Гомеостаз — это динамическое постоянство внутренней среды, который характеризуется множеством относительно постоянных количественных показателей, получивших название физиологических, или биологических, констант. Эти константы обеспечивают оптимальные (наилучшие) условия жизнедеятельности клеток организма, а с другой — отражают его нормальное состояние.

Важнейшим компонентом внутренней среды организма является кровь. В понятии системы крови по Лангу входят кровь, регулирующий ней рогу моральный аппарат, а также органы, в которых происходит образование и разрушение клеток крови (костный мозг, лимфатические узлы, вилочковая железа, селезенка и печень).

Функции крови

Кровь выполняет следующие функции.

Транспортная функция — заключается в транспорте кровью различных веществ (энергии и информации, в них заключенных) и тепла в пределах организма.

Дыхательная функция — кровь переносит дыхательные газы — кислород (0 2) и углекислый газ (СО?) — как в физически растворенном, так и химически связанном виде. Кислород доставляется от легких к потребляющим его клеткам органов и тканей, а углекислый газ — наоборот от клеток к легким.

Питательная функция — кровь переносит также мигательные вещества от органов, где они всасываются или депонируются, к месту их потребления.

Выделительная (экскреторная) функция — при биологическом окислении питательных веществ, в клетках образуются, кроме СО 2 , другие конечные продукты обмена (мочевина, мочевая кислота), которые транспортируются кровью к выделительным органам: почкам, легким, потовым железам, кишечнику. Кровью осуществляются также транспорт гормонов, других сигнальных молекул и биологически активных веществ.

Терморегулирующая функция — благодаря своей высокой теплоемкости кровь обеспечивает перенос тепла и его перераспределение в организме. Кровью переносится около 70% тепла, образующегося во внутренних органах в кожу и легкие, что обеспечивает рассеяние ими тепла в окружающую среду.

Гомеостатическая функция — кровь участвует в водно- солевом обмене в организме и обеспечивает поддержание постоянства его внутренней среды — гомеостаза.

Защитная функция заключается прежде всего в обеспечении иммунных реакций, а также создании кровяных и тканевых барьеров против чужеродных веществ, микроорганизмов, дефектных клеток собственного организма. Вторым проявлением защитной функции крови являетcя ее участие в поддержании своего жидкого агрегатного состояния (текучести), а также остановке кровотечения при повреждении стенок сосудов и восстановлении их проходимости после репарации дефектов.

Система крови и её функции

Представление о крови как системе создал наш соотечественник Г.Ф. Ланг в 1939 г. В эту систему он включил четыре части:

  • периферическая кровь, циркулирующая по сосудам;
  • органы кроветворения (красный костный мозг, лимфатические узлы и селезенка);
  • органы кроверазрушения;
  • регулирующий нейрогуморальный аппарат.

Система крови представляет собой одну из систем жизнеобеспечения организма и выполняет множество функций:

  • транспортная - циркулируя по сосудам, кровь осуществляет транспортную функцию, которая определяет ряд других;
  • дыхательная — связывание и перенос кислорода и углекислого газа;
  • трофическая (питательная) - кровь обеспечивает все клетки организма питательными веществами: глюкозой, аминокислотами, жирами, минеральными веществами, водой;
  • экскреторная (выделительная) - кровь уносит из тканей «шлаки» — конечные продукты метаболизма: мочевину, мочевую кислоту и другие вещества, удаляемые из организма органами выделения;
  • терморегуляторная — кровь охлаждает энергоемкие органы и согревает органы, теряющие тепло. В организме имеются механизмы, которые обеспечивают быстрое сужение сосудов кожи при понижении температуры окружающего воздуха и расширение сосудов при повышении. Это приводит к уменьшению или увеличению потери тепла, так как плазма состоит на 90-92% из воды и обладает вследствие этого высокой теплопроводностью и удельной теплоемкостью;
  • гомеостатическая - кровь поддерживает стабильность ряда констант гомеостаза — , осмотического давления и др.;
  • обеспечение водно-солевого обмена между кровью и тканями — в артериальной части капилляров жидкость и соли поступают в ткани, а в венозной части капилляров возвращаются в кровь;
  • защитная - кровь является важнейшим фактором иммунитета, т.е. защиты организма от живых тел и генетически чужеродных веществ. Это определяется фагоцитарной активностью лейкоцитов (клеточный иммунитет) и наличием в крови антител, обезвреживающих микробы и их яды (гуморальный иммунитет);
  • гуморальная регуляция - благодаря своей транспортной функции кровь обеспечивает химическое взаимодействие между всеми частями организма, т.е. гуморальную регуляцию. Кровь переносит гормоны и другие биологически активные вещества от клеток, где они образуются, к другим клеткам;
  • осуществление креаторных связей. Макромолекулы, переносимые плазмой и форменными элементами крови, осуществляют межклеточную передачу информации, обеспечивающую регуляцию внутриклеточных процессов синтеза белков, сохранение степени дифференцированности клеток, восстановление и поддержание структуры тканей.

Суть этой функции сводится к следующему процессу: в случае повреждения среднего или тонкого кровеносного сосуда (при сдавливании или надрезе ткани) и возникновения наружного или внутреннего кровотечения на месте разрушения сосуда образуется сгусток крови. Именно он препятствует значительной кровопотере. Под воздействием высвобождаемых нервных импульсов и химических веществ просвет сосуда сокращается. Если так случилось, что была повреждена эндотелиальная выстилка кровеносных сосудов, расположенный под эндотелием коллаген обнажается. На него достаточно быстро налипают тромбоциты, которые циркулируют в крови.

Гомеостатическая и защитная функции

Изучая кровь, ее состав и функции, стоит обратить внимание на процесс гомеостаза. Суть его сводится к сохранению водно-солевого и ионного баланса (следствие осмотического давления), и поддержанию pH внутренней среды организма.

Что касается защитной функции, то ее суть заключается в защите организма посредством иммунных антител, фагоцитарной активности лейкоцитов и антибактериальных веществ.

Система крови

К можно отнести сердце и сосуды: кровеносные и лимфатические. Ключевая задача системы крови - это своевременное и полноценное снабжение органов и тканей всеми необходимыми для жизнедеятельности элементами. Движение крови по системе сосудов обеспечивается посредством нагнетательной деятельности сердца. Углубляясь в тему: «Значение, состав и функции крови» стоит определить тот факт, что непосредственно сама кровь двигается по сосудам непрерывно и поэтому способна поддерживать все жизненно важные функции, о которых шла речь выше (транспортная, защитная и др.).

Ключевым органом в системе крови является сердце. Оно имеет структуру полого мышечного органа и посредством вертикальной цельной перегородки делится на левую и правую половины. Есть еще одна перегородка - горизонтальная. Ее задача сводится к разделению сердца на 2 верхние полости (предсердия) и 2 нижние (желудочки).

Изучая состав и функции крови человека, важно понимать принцип действия кругов кровообращения. В системе крови функционируют два круга движения: большой и малый. Это означает, что кровь внутри организма двигается по двум замкнутым системам сосудов, которые соединяются с сердцем.

В качестве начальной точки большого круга выступает аорта, отходящая от левого желудочка. Именно она дает начало мелким, средним и крупным артериям. Они (артерии), в свою очередь, разветвляются на артериолы, завершающиеся капиллярами. Непосредственно сами капилляры образуют широкую сеть, которая пронизывает все ткани и органы. Именно в этой сети происходит отдача питательных веществ и кислорода клеткам, равно как и процесс получения продуктов метаболизма (углекислого газа в том числе).

От нижней части туловища кровь поступает в от верхней, соответственно, в верхнюю. Именно эти две полые вены и завершают большой круг кровообращения, попадая в правое предсердие.

Касаясь малого круга кровообращения, стоит отметить, что он начинается легочным стволом, отходящим от правого желудочка и несущим в легкие венозную кровь. Сам легочный ствол разделяется на две ветви, которые идут к правому и левому артерии делятся на более мелкие артериолы и капилляры, переходящие впоследствии в венулы, образующие вены. Ключевая задача малого круга кровообращения заключается в обеспечении регенерации газового состава в легких.

Изучая состав крови и функции крови, нетрудно прийти к выводу, что она имеет крайне важное значение для тканей и внутренних органов. Поэтому в случае серьёзной кровопотери или нарушения кровотока появляется реальная угроза жизни человека.

Заключается в переносе кровью различных веществ. Специфической особенностью крови является транспорт О 2 и СО 2 . Транспорт газов осуществляется эритроцитами и плазмой.

Характеристика эритроцитов. (Эр).

Форма: 85% Эр – двояковогнутый диск, легко деформируется, что необходимо для прохождения его через капилляр. Диаметр эритроцита = 7,2 – 7,5 мкм.

Больше 8 мкм – макроциты.

Меньше 6 мкм – микроциты.

Количество :

М – 4,5 – 5,0 ∙ 10 12/л. . - эритроцитоз.

Ж – 4,0 – 4,5 ∙ 10 12/л. ↓ - эритропения.

Мембрана Эр легко проницаема для анионов НСО 3 – Cl, а также для О 2 , СО 2 , Н + , ОН - .

Малопроницаема для К + , Na + (в 1млн раз ниже, чем для анионов).

Свойства эритроцитов.

1) Пластичность – способность к обратимой деформации. По мере старения эта способность снижается.

Превращение Эр в сфероциты приводит к тому, что они не могут пройти через капилляр и задерживаются в селезенке, фагоцитируются.

Пластичность зависит от свойств мембраны и свойств гемоглобина, от соотношения различных фракций липидов в мембране. Особенно важно соотношение фосфолипидов и холестерина, которые определяют текучесть мембран.

Данное соотношение выражается в виде липолитического коэффициента (ЛК):

В норме ЛК = холестерин / лецитин = 0,9

↓ холестерина → ↓ стойкость мембран, меняется свойство текучесть.

Лецитина → проницаемость мембраны эритроцита.

2) Осмотическая устойчивость эритроцита.

Р осм. в эритроците выше, чем в плазме, что обеспечивает тургор клетки. Создается высокой внутриклеточной концентрацией белков, больше чем в плазме. В гипотоническом растворе Эр набухают, в гипертоническом сморщиваются.

3) Обеспечение креаторных связей.

На эритроците переносятся различные вещества. Это обеспечивает межклеточное взаимодействие.

Показано, что при повреждении печени эритроциты начинают усиленно транспортировать из костного мозга в печень нуклеотиды, пептиды, аминокислоты способствуя восстановление структуры органа.

4) Способность эритроцитов к оседанию.

Альбумины – лиофильные коллоиды, создают вокруг эритроцита гидратную оболочку и держат их во взвешенном состоянии.

Глобулины лиофобные коллоиды – уменьшают гидратную оболочку и отрицательный поверхностный заряд мембраны, что способствует усилению агрегации эритроцитов.

Соотношение альбуминов и глобулинов - это белковый коэффициент БК. В норме

БК = альбумины / глобулины = 1,5 – 1,7

При нормальном белковом коэффициенте СОЭ у мужчин 2 – 10мм/час; у женщин 2 – 15 мм/час.

5) Агрегация эритроцитов.

При замедлении кровотока и повышении вязкости крови эритроциты образуют агрегаты, которые приводят к реологическим расстройствам. Это бывает:

1) при травматическом шоке;

2) постинфарктном коллапсе;

3) перитоните;

4) острой кишечной непроходимости;

5) ожогах;

5) остром панкреатите и других состояниях.

6) Деструкция эритроцитов.

Продолжительность жизни эритроцита в русле ~ 120 дней. В этот период развивается физиологическое старение клетки. Около 10% эритроцитов разрушаются в норме в сосудистом русле, остальные в печени, селезенке.

Функции эритроцитов.

1) Транспорт О 2 , СО 2 , АК, пептидов, нуклеотидов к различным органам для регенеративных процессов.

2) Способность адсорбировать токсичные продукты эндогенного и экзогенного, бактериального и не бактериального происхождения и их инактивировать.

3) Участие в регуляции рН крови за счет гемоглобинового буфера.

4) Эр. принимают участие в свертывании крови и фибринолизе, сорбируя на всей поверхности факторы свертывающей и противосвертывающей систем.

5) Эр. участвуют в иммунологических реакциях, например агглютинации, т. к. в их мембранах есть антигены – агглютиногены.

Функции гемоглобина.

Содержится в эритроците. На долю гемоглобина приходится 34% общей и 90 – 95% сухой массы эритроцита. Он обеспечивает транспорт О 2 и СО 2 . Это хромопротеид. Состоит из 4 х железосодержащих групп гема и белкового остатка глобина. Железо Fe 2+ .

М. от 130 до 160 г/л (ср. 145г/л).

Ж. от 120 до 140г/л.

Синтез Нв начинается в нормоцитах. По мере созревания эритроидной клетки снижается синтез Нв. Зрелые эритроциты Нв не синтезируют.

Процесс синтеза Нв при эритропоэзе связан с потреблением эндогенного железа.

При разрушении эритроцитов из гемоглобина образуется желчный пигмент билирубин, который в кишечнике превращается в стеркобилин, а в почках – в уробилин и выводится с калом и мочой.

Виды гемоглобина.

7 – 12 неделя внутриутробного развития - Нв Р (примитивный). На 9 ой неделе – Нв F (фетальный). К моменту рождения – появляется Нв А.

В течение первого года жизни Нв F полностью заменяется на Нв А.

Нв Р и Нв F имеют более высокое сродство к О 2 , чем Нв А, т. е. способность насыщаться О 2 при меньшем его содержании в крови.

Сродство определяют глобины.

Соединения гемоглобина с газами.

Соединения гемоглобина с кислородом называется оксигемоглобином (HbO 2), обеспечивает алый цвет артериальной крови.

Кислородная емкость крови (КЕК).

Это количество кислорода, которое может связать 100г крови. Известно, что один г. гемоглобина связывает 1,34 мл О 2 . КЕК = Hb∙1,34 . Для артериальной крови кек = 18 – 20 об% или 180 – 200 мл/л крови.

Кислородная емкость зависит от:

1) количества гемоглобина.

2) температуры крови (при нагревании крови снижается)

3) рН (при закислении снижается)

Патологические соединения гемоглобина с кислородом.

При действии сильных окислителей Fe 2+ переходит в Fe 3+ - это прочное соединение метгемоглобин. При накоплении его в крови наступает смерть.

Соединения гемоглобина с СО 2

называется карбгемоглобин HBCO 2 . В артериальной крови его содержится 52об% или 520 мл/л. В венозной – 58об% или 580 мл/л.

Патологическое соединение гемоглобина с СО называется карбоксигемоглобин (HbCO ). Присутствие в воздухе даже 0,1% СО превращает 80% гемоглобина в карбоксигемоглобин. Соединение стойкое. При обычных условиях распадается очень медленно.

Помощь при отравлении угарным газом.

1)обеспечить доступ кислорода

2) вдыхание чистого кислорода увеличивает скорость распада карбоксигемоглобина в 20 раз.

Миоглобин.

Это гемоглобин, содержащийся в мышцах и миокарде. Обеспечивает потребности в кислороде при сокращении с прекращением кровотока (статические напряжение скелетных мышц).

Эритрокинетика.

Под этим понимают развитие эритроцитов, функционирование их в сосудистом русле и разрушение.

Эритропоэз

Гемоцитопоэз и эритропоэз происходит в миелоидной ткани. Развитие всех форменных элементов идет из полипотентной стволовой клетки.

КПЛ → СК → КОЕ ─ГЭММ

КПТ- л КПВ- л Н Э Б

Факторы, влияющие на дифференцировку стволовой клетки.

1. Лимфокины. Выделяются лейкоцитами. Много лимфокинов – снижение дифференцировки в сторону эритроидного ряда. Снижение содержания лимфокинов – повышение образования эритроцитов.

2.Главным стимулятором эритропоэза является содержание кислорода в крови. Снижение содержания О 2 , хронический дефицит О 2 являются системообразующим фактором, который воспринимается хеморецепторами центральными и периферическими. Имеет значение хеморецептор юкстагломерулярного комплекса почки (ЮГКП). Он стимулирует образование эритропоэтина, который увеличивает:

1)дифференцировку стволовой клетки.

2)ускоряет созревание эритроцитов.

3)ускоряет выход эритроцитов из депо костного мозга

В этом случае возникает истинный (абсолютный ) эритроцитоз. Количество эритроцитов в организме увеличивается.

Ложный эритроцитоз возникает при временном снижении кислорода в крови

(например, при физической работе). В этом случае эритроциты выходят из депо и их количество растет только в единице объема крови но не в организме.

Эритропоэз

Образование эритроцитов протекает при взаимодействии эритроидных клеток с макрофагами костного мозга. Эти клеточные ассоциации получили название эритробластических островков (ЭО).

Макрофаги ЭО влияют на пролиферацию и созревание эритроцитов путем:

1) фагоцитоза вытолкнутых клеткой ядер;

2) поступления из макрофага в эритробласты ферритина и других пластических материалов;

3) секреции эритропоэтинактивных веществ;

4) создания благоприятных условий для развития эритробластов.

Образование эритроцитов

В сутки образуется 200 – 250 млрд. эритроцитов

проэритробласт (удвоение).

2

базофильные

базофильных эритробластаI порядка.

4 базофильных ЭБ II порядка.

8полихроматфильных эритробластаI порядка.

полихроматофильные

16 полихроматофильных эритробласта II порядка.

32 ПХФ нормобластов.

3

оксифильные

2 оксифильных нормобласта, выталкивание ядра.

32 ретикулоцита.

32 эритроцита.

Факторы, необходимые для образования эритроцита.

1) Железо нужно для синтеза гемма. 95% суточной потребности получает организм из разрушающихся эритроцитов. Ежесуточно требуется 20 – 25 мг Fe.

Депо железа.

1) Ферритин – в макрофагах в печени, слизистой кишечника.

2) Гемосидерин – в костном мозге, печени, селезенке.

Запасы железа нужны для экстренного изменения синтеза эритроцитов. Fe в организме 4 – 5г, из них ¼ резервное Fe, остальное функциональное. 62 – 70% из него находится в составе эритроцитов, 5 – 10% в миоглобине, остальное в тканях, где участвует во многих метаболических процессах.

В костном мозге Fe захватывается преимущественно базофильными и полихроматофильными пронормобластами.

Железо доставляется к эритробластам в комплексе с белком плазмы – трансферрином.

В ЖКТ железо лучше всасывается в 2 х валентном состоянии. Это состояние поддерживает аскорбиновая кислота, фруктоза, АК – цистеин, метионин.

Железо, входящее в состав гемма (в мясных продуктах, кровяных колбасах) лучше всасывается в кишечнике, чем железо из растительных продуктов.1мкг всасывается ежедневно.

Роль витаминов.

В 12 – внешний фактор кроветворения (для синтеза нуклеопротеидов, созревания и деления ядер клеток).

При дефиците В 12 образуются мегалобласты, из них мегалоциты с коротким сроком жизни. Результат – анемия. Причина В 12 – дефицита – отсутствие внутреннего фактора Кастла (гликопротеин, связывающий В 12 , предохраняет В 12 от расщепления пищеварительными ферментами). Дефицит фактора Кастла связан с атрофией слизистой желудка, особенно у стариков. Запасы В 12 на 1 – 5 лет, но его истощение приводит к заболеванию.

В 12 содержится в печени, почках, яйцах. Суточная потребность 5мкг.

Фолиевая кислота ДНК, глобин (поддерживает синтез ДНК в клетках костного мозга и синтез глобина).

Суточная потребность 500 – 700мкг, есть резерв 5 – 10мг, треть его в печени.

Недостаток В 9 – анемия связанная с ускоренным разрушением эритроцитов.

Содержится в овощах (шпинат), дрожжах, молоке.

В 6 – пиридоксин – для образования гемма.

В 2 – для образования стромы , дефицит вызывает анемию гипорегенеративного типа.

Пантотеновая кислота – синтез фосфолипидов.

Витамин С – поддерживает основные этапы эритропоэза: метаболизм фолиевой кислоты, железа, (синтез гемма).

Витамин Е – защищает фосфолипиды мембраны эритроцита от перекисного окисления, усиливающего гемолиз эритроцитов.

РР – тоже.

Микроэлементы Ni, Со, селен сотрудничает с витамином Е, Zn – 75% его находится в эритроцитах в составе карбоангидразы.

Анемия:

1) вследствие снижения числа эритроцитов;

2) снижение содержания гемоглобина;

3) обе причины вместе.

Стимуляция эритропоэза происходит под влиянием АКТГ, глюкокортикоидов, ТТГ,

катехоламинов через β – АР, андрогенов, простагландинов (ПГЕ, ПГЕ 2), симпатической системы.

Тормозит ингибитор эритропоэза при беременности.

Анемия

1) вследствие снижения числа эритроцитов

2)снижение количества гемоглобина

3)обе причины вместе.

Функционирование эритроцитов в сосудистом русле

Качество функционирования эритроцитов зависит от:

1) размера эритроцита

2) формы эритроцита

3) вида гемоглобина в эритроцитах

4) количества гемоглобина в эритроцитах

4) количества эритроцитов в периферической крови. Это связано с работой депо.

Разрушение эритроцитов

Живут максимально 120 дней, в среднем 60 - 90.

При старении в ходе метаболизма глюкозы уменьшается образование АТФ. Это приводит:

1) к нарушению ионного состава содержимого эритроцита. В результате - осмотический гемолиз в сосуде;

2) Недостаток АТФ приводит к нарушению эластичности мембраны эритроцита и вызывает механический гемолиз в сосуде;

При внутрисосудистом гемолизе гемоглобин освобождается в плазму, связывается с гаптоглобином плазмы и покидает плазму, поглощаясь паренхимой печени.

Заключается в том, что крови играет роль транспортируемой среды в замкнутой цепи сердечно-сосудистой системы. Но говорить о транспортной функции крови, не уточняя что именно транспортируется в этой среде, не имеет смысла. Транспортироваться (передаваться) может вещество, энергия, информация .

Начнем с транспорта веществ.

Транспорт дыхательных газов (кислорода и углекислого газа) от лёгких к клеткам и обратно – дыхательная функция.

Транспорт питательных веществ от кишечника к клеткам – питательная функция.

Транспорт экскретов к выделительным органам – экскреторная функция.

Когда говорят о функции крови по передаче силы, как правило, приводят примеры участия крови в локомоции дождевых червей, разрыве кутикулы при линьке у ракообразных и т.п., забывая, что эту важную функцию кровь выполняет и у человека.

Передача гидростатического давления обеспечивает фильтрацию жидкостей в нутритивных капиллярах, клубочковую фильтрацию в почках, эрекцию полового члена, клитора, …).

Транспорт информационных молекул (гормонов, метаболитов, биологически активных веществ) обеспечивает регуляторную функцию .

Все функции крови связаны между собой и неотделимы друг от друга.

Защитная функция крови

Включает:

1. иммунитет

2. гемостаз

3. реакция буферов

Регуляторная функция крови

Включает:

1. гуморальная регуляция (включая гормональную)

2. гомеостатическая

Состав крови

Всю кровь можно разделить на циркулирующую ~ 5 л и депонированную в селезенке, печени, подкожном сосудистом сплетении и легких ~ 1 л.

Состав крови можно представить в виде схемы, представленной на рис. 711171750.

Рис. 711171750. Состав крови.


Плазмаферез

Плазмаферез - процесс выведения плазмы крови из кровообращения.

Изредка используется как метод лечения, однако наиболее часто применяется для сбора донорской плазмы.

В ходе донорского плазмафереза из организма извлекается порция крови (около 300 мл), которая затем центрифугируется с целью отделения плазмы от эритроцитов. Плазма затем переливается в заготовленную ёмкость, а тельца возвращаются донору. Процесс повторяется необходимое число раз.

Стандартная доза извлекаемой плазмы - 600 мл. Для её получения необходимо переработать около 1 л крови. Срок восстановления такого объёма плазмы - около трех недель, что существенно меньше, чем срок восстановления аналогичного объёма крови, так как в этом случае основное время занимает восстановление именно кровяных телец.

Гематокрит

Гематокрит - отношение объёма форменных элементов к объёму крови.

Синонимы: гематокритная величины, гематокритное число, гематокритный показатель[Б57] .

От греч. Haimatos кровь + kritos отдельный, определённый).

Обратите внимание! «... к объёму крови », а не плазмы. «Объёма форменных элементов к...», а не эритроцитов. Да, гематокрит в основном определяется количеством эритроцитов, и, тем не менее, речь идет об относительном содержании всех форменных элементов в крови[Б58] . Поэтому неправильно отождествлять понятия «общий объём эритроцитов» и «гематокритная величина» ++176++[Б59] .

Гематокрит определяется в условиях предотвращения свёртывания крови с помощью антикоагулянтов и после центрифугирования (раньше в микроцентрифуге Шкляра) .

У здоровых мужчин гематокрит венозной и капиллярной крови равен 40-48 %, женщин – 36-42 [Б60] %. У новорождённых гематокритное число достигает 60-62 %, затем оно уменьшается, а с 6 месяцев начинает повышаться, достигая цифр, характерных для взрослых, к 14 годам [++346[Б61] +].

Венозный гематокрит существенно ниже артериального. Общий телесный гематокрит (ОТГкр) также меньше определяемого венозного (ВГкр) и вычисляется по формуле: ОТГкр = 0,92·ВГкр.

Динамический гематокрит

Измерив гематокрит цельной крови, находящейся в резервуаре, и гематокрит той же крови, вытекаю­щей из него по трубке, мы обнаружим, что в трубке он ниже. Это явление известно давно[Б62] . Наблюдаемое снижение гематокрита обусловлено наличием свободного от клеток слоя, ибо взвешенные в плазме эритроциты движутся вместе с ней в центральной части трубки с относительно большой скоростью, а плазма движется не только вместе с эрит­роцитами, но и у стенки, где скорость ее перемещения мала. Это явление имеет место независимо от вида профиля скорости. В ре­зультате среднее время прохождения данного отрезка трубки для эритроцитов оказывается меньшим, чем для плазмы. Если бы ве­личина динамического гематокрита была такой же, как его статическая величина на входе в трубку, то на конце трубки концент­рация эритроцитов должна бы была увеличиваться! В действи­тельности динамический гематокрит, измеренный в любой доста­точно узкой трубке, всегда меньше статического. Поэтому, хотя время прохождения через трубку отдельного эритроцита меньше, чем время прохождения плазмы, общее число эритроцитов, прохо­дящих через трубку за определенное время, поддерживается на соответствующем уровне.

Заключается в переносе кровью различных веществ. Специфической особенностью крови является транспорт О 2 и СО 2 . Транспорт газов осуществляется эритроцитами и плазмой.

Характеристика эритроцитов. (Эр).

Форма: 85% Эр – двояковогнутый диск, легко деформируется, что необходимо для прохождения его через капилляр. Диаметр эритроцита = 7,2 – 7,5 мкм.

Больше 8 мкм – макроциты.

Меньше 6 мкм – микроциты.

Количество :

М – 4,5 – 5,0 ∙ 10 12/л. . - эритроцитоз.

Ж – 4,0 – 4,5 ∙ 10 12/л. ↓ - эритропения.

Мембрана Эр легко проницаема для анионов НСО 3 – Cl, а также для О 2 , СО 2 , Н + , ОН - .

Малопроницаема для К + , Na + (в 1млн раз ниже, чем для анионов).

Свойства эритроцитов.

1) Пластичность – способность к обратимой деформации. По мере старения эта способность снижается.

Превращение Эр в сфероциты приводит к тому, что они не могут пройти через капилляр и задерживаются в селезенке, фагоцитируются.

Пластичность зависит от свойств мембраны и свойств гемоглобина, от соотношения различных фракций липидов в мембране. Особенно важно соотношение фосфолипидов и холестерина, которые определяют текучесть мембран.

Данное соотношение выражается в виде липолитического коэффициента (ЛК):

В норме ЛК = холестерин / лецитин = 0,9

↓ холестерина → ↓ стойкость мембран, меняется свойство текучесть.

Лецитина → проницаемость мембраны эритроцита.

2) Осмотическая устойчивость эритроцита.

Р осм. в эритроците выше, чем в плазме, что обеспечивает тургор клетки. Создается высокой внутриклеточной концентрацией белков, больше чем в плазме. В гипотоническом растворе Эр набухают, в гипертоническом сморщиваются.

3) Обеспечение креаторных связей.

На эритроците переносятся различные вещества. Это обеспечивает межклеточное взаимодействие.

Показано, что при повреждении печени эритроциты начинают усиленно транспортировать из костного мозга в печень нуклеотиды, пептиды, аминокислоты способствуя восстановление структуры органа.

4) Способность эритроцитов к оседанию.

Альбумины – лиофильные коллоиды, создают вокруг эритроцита гидратную оболочку и держат их во взвешенном состоянии.

Глобулины лиофобные коллоиды – уменьшают гидратную оболочку и отрицательный поверхностный заряд мембраны, что способствует усилению агрегации эритроцитов.

Соотношение альбуминов и глобулинов - это белковый коэффициент БК. В норме

БК = альбумины / глобулины = 1,5 – 1,7

При нормальном белковом коэффициенте СОЭ у мужчин 2 – 10мм/час; у женщин 2 – 15 мм/час.

5) Агрегация эритроцитов.

При замедлении кровотока и повышении вязкости крови эритроциты образуют агрегаты, которые приводят к реологическим расстройствам. Это бывает:

1) при травматическом шоке;

2) постинфарктном коллапсе;

3) перитоните;

4) острой кишечной непроходимости;

5) ожогах;

5) остром панкреатите и других состояниях.

6) Деструкция эритроцитов.

Продолжительность жизни эритроцита в русле ~ 120 дней. В этот период развивается физиологическое старение клетки. Около 10% эритроцитов разрушаются в норме в сосудистом русле, остальные в печени, селезенке.

Функции эритроцитов.

1) Транспорт О 2 , СО 2 , АК, пептидов, нуклеотидов к различным органам для регенеративных процессов.

2) Способность адсорбировать токсичные продукты эндогенного и экзогенного, бактериального и не бактериального происхождения и их инактивировать.

3) Участие в регуляции рН крови за счет гемоглобинового буфера.

4) Эр. принимают участие в свертывании крови и фибринолизе, сорбируя на всей поверхности факторы свертывающей и противосвертывающей систем.

5) Эр. участвуют в иммунологических реакциях, например агглютинации, т. к. в их мембранах есть антигены – агглютиногены.

Функции гемоглобина.

Содержится в эритроците. На долю гемоглобина приходится 34% общей и 90 – 95% сухой массы эритроцита. Он обеспечивает транспорт О 2 и СО 2 . Это хромопротеид. Состоит из 4 х железосодержащих групп гема и белкового остатка глобина. Железо Fe 2+ .

М. от 130 до 160 г/л (ср. 145г/л).

Ж. от 120 до 140г/л.

Синтез Нв начинается в нормоцитах. По мере созревания эритроидной клетки снижается синтез Нв. Зрелые эритроциты Нв не синтезируют.

Процесс синтеза Нв при эритропоэзе связан с потреблением эндогенного железа.

При разрушении эритроцитов из гемоглобина образуется желчный пигмент билирубин, который в кишечнике превращается в стеркобилин, а в почках – в уробилин и выводится с калом и мочой.

Виды гемоглобина.

7 – 12 неделя внутриутробного развития - Нв Р (примитивный). На 9 ой неделе – Нв F (фетальный). К моменту рождения – появляется Нв А.

В течение первого года жизни Нв F полностью заменяется на Нв А.

Нв Р и Нв F имеют более высокое сродство к О 2 , чем Нв А, т. е. способность насыщаться О 2 при меньшем его содержании в крови.

Сродство определяют глобины.

Соединения гемоглобина с газами.

Соединения гемоглобина с кислородом называется оксигемоглобином (HbO 2), обеспечивает алый цвет артериальной крови.

Кислородная емкость крови (КЕК).

Это количество кислорода, которое может связать 100г крови. Известно, что один г. гемоглобина связывает 1,34 мл О 2 . КЕК = Hb∙1,34 . Для артериальной крови кек = 18 – 20 об% или 180 – 200 мл/л крови.

Кислородная емкость зависит от:

1) количества гемоглобина.

2) температуры крови (при нагревании крови снижается)

3) рН (при закислении снижается)

Патологические соединения гемоглобина с кислородом.

При действии сильных окислителей Fe 2+ переходит в Fe 3+ - это прочное соединение метгемоглобин. При накоплении его в крови наступает смерть.

Соединения гемоглобина с СО 2

называется карбгемоглобин HBCO 2 . В артериальной крови его содержится 52об% или 520 мл/л. В венозной – 58об% или 580 мл/л.

Патологическое соединение гемоглобина с СО называется карбоксигемоглобин (HbCO ). Присутствие в воздухе даже 0,1% СО превращает 80% гемоглобина в карбоксигемоглобин. Соединение стойкое. При обычных условиях распадается очень медленно.

Помощь при отравлении угарным газом.

1)обеспечить доступ кислорода

2) вдыхание чистого кислорода увеличивает скорость распада карбоксигемоглобина в 20 раз.

Миоглобин.

Это гемоглобин, содержащийся в мышцах и миокарде. Обеспечивает потребности в кислороде при сокращении с прекращением кровотока (статические напряжение скелетных мышц).

Эритрокинетика.

Под этим понимают развитие эритроцитов, функционирование их в сосудистом русле и разрушение.

Эритропоэз

Гемоцитопоэз и эритропоэз происходит в миелоидной ткани. Развитие всех форменных элементов идет из полипотентной стволовой клетки.

КПЛ → СК → КОЕ ─ГЭММ

КПТ- л КПВ- л Н Э Б

Факторы, влияющие на дифференцировку стволовой клетки.

1. Лимфокины. Выделяются лейкоцитами. Много лимфокинов – снижение дифференцировки в сторону эритроидного ряда. Снижение содержания лимфокинов – повышение образования эритроцитов.

2.Главным стимулятором эритропоэза является содержание кислорода в крови. Снижение содержания О 2 , хронический дефицит О 2 являются системообразующим фактором, который воспринимается хеморецепторами центральными и периферическими. Имеет значение хеморецептор юкстагломерулярного комплекса почки (ЮГКП). Он стимулирует образование эритропоэтина, который увеличивает:

1)дифференцировку стволовой клетки.

2)ускоряет созревание эритроцитов.

3)ускоряет выход эритроцитов из депо костного мозга

В этом случае возникает истинный (абсолютный ) эритроцитоз. Количество эритроцитов в организме увеличивается.

Ложный эритроцитоз возникает при временном снижении кислорода в крови

(например, при физической работе). В этом случае эритроциты выходят из депо и их количество растет только в единице объема крови но не в организме.

Эритропоэз

Образование эритроцитов протекает при взаимодействии эритроидных клеток с макрофагами костного мозга. Эти клеточные ассоциации получили название эритробластических островков (ЭО).

Макрофаги ЭО влияют на пролиферацию и созревание эритроцитов путем:

1) фагоцитоза вытолкнутых клеткой ядер;

2) поступления из макрофага в эритробласты ферритина и других пластических материалов;

3) секреции эритропоэтинактивных веществ;

4) создания благоприятных условий для развития эритробластов.

Образование эритроцитов

В сутки образуется 200 – 250 млрд. эритроцитов

проэритробласт (удвоение).

2

базофильные

базофильных эритробластаI порядка.

4 базофильных ЭБ II порядка.

8полихроматфильных эритробластаI порядка.

полихроматофильные

16 полихроматофильных эритробласта II порядка.

32 ПХФ нормобластов.

3

оксифильные

2 оксифильных нормобласта, выталкивание ядра.

32 ретикулоцита.

32 эритроцита.

Факторы, необходимые для образования эритроцита.

1) Железо нужно для синтеза гемма. 95% суточной потребности получает организм из разрушающихся эритроцитов. Ежесуточно требуется 20 – 25 мг Fe.

Депо железа.

1) Ферритин – в макрофагах в печени, слизистой кишечника.

2) Гемосидерин – в костном мозге, печени, селезенке.

Запасы железа нужны для экстренного изменения синтеза эритроцитов. Fe в организме 4 – 5г, из них ¼ резервное Fe, остальное функциональное. 62 – 70% из него находится в составе эритроцитов, 5 – 10% в миоглобине, остальное в тканях, где участвует во многих метаболических процессах.

В костном мозге Fe захватывается преимущественно базофильными и полихроматофильными пронормобластами.

Железо доставляется к эритробластам в комплексе с белком плазмы – трансферрином.

В ЖКТ железо лучше всасывается в 2 х валентном состоянии. Это состояние поддерживает аскорбиновая кислота, фруктоза, АК – цистеин, метионин.

Железо, входящее в состав гемма (в мясных продуктах, кровяных колбасах) лучше всасывается в кишечнике, чем железо из растительных продуктов.1мкг всасывается ежедневно.

Роль витаминов.

В 12 – внешний фактор кроветворения (для синтеза нуклеопротеидов, созревания и деления ядер клеток).

При дефиците В 12 образуются мегалобласты, из них мегалоциты с коротким сроком жизни. Результат – анемия. Причина В 12 – дефицита – отсутствие внутреннего фактора Кастла (гликопротеин, связывающий В 12 , предохраняет В 12 от расщепления пищеварительными ферментами). Дефицит фактора Кастла связан с атрофией слизистой желудка, особенно у стариков. Запасы В 12 на 1 – 5 лет, но его истощение приводит к заболеванию.

В 12 содержится в печени, почках, яйцах. Суточная потребность 5мкг.

Фолиевая кислота ДНК, глобин (поддерживает синтез ДНК в клетках костного мозга и синтез глобина).

Суточная потребность 500 – 700мкг, есть резерв 5 – 10мг, треть его в печени.

Недостаток В 9 – анемия связанная с ускоренным разрушением эритроцитов.

Содержится в овощах (шпинат), дрожжах, молоке.

В 6 – пиридоксин – для образования гемма.

В 2 – для образования стромы , дефицит вызывает анемию гипорегенеративного типа.

Пантотеновая кислота – синтез фосфолипидов.

Витамин С – поддерживает основные этапы эритропоэза: метаболизм фолиевой кислоты, железа, (синтез гемма).

Витамин Е – защищает фосфолипиды мембраны эритроцита от перекисного окисления, усиливающего гемолиз эритроцитов.

РР – тоже.

Микроэлементы Ni, Со, селен сотрудничает с витамином Е, Zn – 75% его находится в эритроцитах в составе карбоангидразы.

Анемия:

1) вследствие снижения числа эритроцитов;

2) снижение содержания гемоглобина;

3) обе причины вместе.

Стимуляция эритропоэза происходит под влиянием АКТГ, глюкокортикоидов, ТТГ,

катехоламинов через β – АР, андрогенов, простагландинов (ПГЕ, ПГЕ 2), симпатической системы.

Тормозит ингибитор эритропоэза при беременности.

Анемия

1) вследствие снижения числа эритроцитов

2)снижение количества гемоглобина

3)обе причины вместе.

Функционирование эритроцитов в сосудистом русле

Качество функционирования эритроцитов зависит от:

1) размера эритроцита

2) формы эритроцита

3) вида гемоглобина в эритроцитах

4) количества гемоглобина в эритроцитах

4) количества эритроцитов в периферической крови. Это связано с работой депо.

Разрушение эритроцитов

Живут максимально 120 дней, в среднем 60 - 90.

При старении в ходе метаболизма глюкозы уменьшается образование АТФ. Это приводит:

1) к нарушению ионного состава содержимого эритроцита. В результате - осмотический гемолиз в сосуде;

2) Недостаток АТФ приводит к нарушению эластичности мембраны эритроцита и вызывает механический гемолиз в сосуде;

При внутрисосудистом гемолизе гемоглобин освобождается в плазму, связывается с гаптоглобином плазмы и покидает плазму, поглощаясь паренхимой печени.