Сердце иннервируется симпатическими и парасимпатическими нервами. Парасимпатические волокна, отходящие от блуждающего нерва, распределяются главным образом в СА-и АВ-узлах. Симпатические нервы распределены по всему сердцу.

Стимуляция парасимпатических нервов, идущих к сердцу, урежает ритм, задаваемый СА-узлом и замедляет скорость проведения возбуждения через АВ-узел.

Симпатическая стимуляция оказывает на частоту сердечных сокращений противоположное действие, увеличивая частоту спонтанного возбуждения СА- узла, уменьшая задержку при проведении через АВ-узел и увеличивая силу сокращения мышцы сердца. И блуждающие, и симпатические нервы оказывают на сердце 5 влияний:

  1. хронотропный (изменяют частоту сердечных сокращений);
  2. инотропный (изменяют силу сердечных сокращений);
  3. батмотропный (влияют на возбудимость миокарда);
  4. дромотропный (влияет на проводимость);
  5. тонотропный (влияют на тонус миокарда);

То есть они оказывают влияние на интенсивность обменных процессов.

Парасимпатическая нервная система - отрицательные все 5 явлений; симпатическая нервная система - все 5 явлений положительные.

Влияние парасимпатических нервов.

Отрицательное влияние n.vagus связано с тем, что его медиатор ацетилхолин взаимодействует с М-холинорецепторами.

Отрицательное хронотропное влияние - за счёт взаимодействия между ацетилхолином с М-холинорецепторами синоартиального узла. в результате открываются калиевые каналы (повышается проницаемость для К+), в результате уменьшается скорость медленной диастолической спонтанной поляризации, в итоге уменьшается количество сокращений в минуту (за счёт увеличения продолжительности действия потенциала действия).

Отрицательное инотропное влияние - ацетилхолин взаимодействует с М-холинорецепторами кардиомиоцитов. В результате тормозится активность аденилатциклазы и активируется гуанилатциклазный путь. Ограничение аденилатциклазного пути уменьшает окислительное фосфорилирование, уменьшается количество макроэргических соединений, в итоге уменьшается сила сердечных сокращений.

Отрицательное батмотропное влияние - ацетилхолин взаимодействует и М-холинорецепторами всех образований сердца. В резултате увеличивается проницаемость клеточной мембраны миокардиоцитов для К+. Величина мембранного потенциала увеличивается (гиперполяризация). Разность между мембранным потенциалом и Е критическим увеличивается, а эта разность показатель порога раздражения. Порог раздражения увеличивается - возбудимость уменьшается.



Отрицательное дромоторопное влияние - т. к. возбудимость уменьшается, то малые круговые токи медленнее распространяются, поэтому уменьшается скорость проведения возбуждения.

Отрицательный тонотропный эффект - под действием n.vagus не происходит активации обменных процессов.
Влияние симпатических нервов.

Медиатор норадреналин взаимодействует с бетта 1-адренорецепротами синоатриального узла. в результате открываются Са 2+ -каналы - повышается проницаемость для К + и Са 2+ . В результате увеличивается скорость мелоенной спонтанной диастолической деполяризации. Продолжительность потенциала действия уменьшается, соответственно частота сердечных сокращений увеличивается - положительный хронотропный эффект.

Положительный инотропный эффект - норадренолин взаимодействует с бетта1- рецепторами кардиоцитов. Эффекты:

  • активируется фермент аденилатциклаза, т. о. стимулируется окислительное фосфорилирование в клетке с образованием, увеличивается синтез АТФ - увеличивается сила сокращений.
  • увеличивается проницаемость для Са 2+ , который участвует в мышечных сокращениях, обеспечивая образование актомиозиновых мостиков.
  • под действием Са 2+ увеличивается активность белка кальмомодулина, который обладает сродством к тропонину, что увеличивает силу сокращений.
  • активируются Са 2+ -зависимые протеинкиназы.
  • под действием норадреналина АТФ-азная активность миозина (фермент АТФ-аза). Это самый важный для симпатической нервной системы фермент.

Положительный батмотропный эффект: норадреналин взаимодействует с бетта 1-адренорецепорами всех клеток, увеличивается проницаемость для Na + и Ca 2+ (эти ионы поступают внутрь клетки), т. о. возникает деполяризация клеточной мембраны. Мембранный потенциал приближается к Е критическому (критический уровень деполяризации). Это снижает порог раздражения, а возбуждаемость клетки увеличивается.



Положительное дромотропное влияние - вызвано повышением возбудимости.

Положительное тонотропное влияние - связано с адаптационно-трофической функцией симпатической нервой системы.
Для парасимпатической нервной системы наиболее важен отрицательный хронотропный эфект, а для симпатической нервной системы - положительное инотропное и тонотропное влияние.

Подробности

Регуляцию тканевого кровотока в зависимости от метаболических потребностей тканей осуществляют местные механизмы самих тканей. Нервные механизмы регуляции гемодинамики выполняют такие общие функции, как перераспределение кровотока между разными органами и тканями , усиление или торможение насосной функции сердца и, что особенно важно, быстрый контроль над уровнем системного артериального давления .

В регуляции кровообращения принимает участие автономная (вегетативная) нервная система.

Важную роль в регуляции кровообращения играет симпатическая нервная система. Парасимпатическая нервная система также участвует в регуляции кровообращения, главным образом в регуляции деятельности сердца.

Симпатическая нервная система.

Симпатические сосудодвигательные волокна в составе спинномозговых нервов отходят от грудных и верхних поясничных сегментов спинного мозга. Они следуют к ганглиям симпатического ствола, который располагается по обе стороны от позвоночника. Затем симпатические волокна идут в двух направлениях:

  • в составе специфических симпатических нервов, которые иннервируют кровеносные сосуды внутренних органов и сердце, как показано в правой части рисунка;
  • в составе периферических спинномозговых нервов, которые иннервируют кровеносные сосуды головы, туловища и конечностей.

Симпатическая иннервация кровеносных сосудов.

В большинстве тканей все сосуды (за исключением капилляров, прекапиллярных сфинктеров и метартериол) иннервируются симпатическими нервными волокнами (симпатическими вазоконстрикторами).
Стимуляция симпатических нервов мелких артерий и артериол приводит к увеличению сосудистого сопротивления и, следовательно, к уменьшению кровотока в тканях.
Стимуляция симпатических нервов крупных кровеносных сосудов, особенно вен, приводит к уменьшению объема этих сосудов. Это способствует продвижению крови по направлению к сердцу и, следовательно, играет важную роль в регуляции сердечной деятельности, о чем будет сказано в следующих главах.

Симпатические нервные волокна сердца.

Симпатические нервные волокна иннервируют и кровеносные сосуды, и сердце. Симпатическая стимуляция приводит к усилению сердечной деятельности за счет увеличения частоты и силы сердечных сокращений.

Роль парасимпатических нервных волокон.

Хотя роль парасимпатической нервной системы в регуляции многих автономных функций (например, многочисленных функций пищеварительного тракта) чрезвычайно велика, она играет относительно малую роль в регуляции кровообращения . Самая значимая - регуляция частоты сердечных сокращений с помощью парасимпатических нервных волокон, идущих к сердцу в составе блуждающих нервов.
Скажем только, что стимуляция парасимпатических нервов вызывает существенное уменьшение частоты сердечных сокращений и незначительное снижение силы сокращений.
В составе симпатических нервов проходит огромное количество сосудосуживающих нервных волокон и совсем немного - сосудорасширяющих волокон. Сосудосуживающие волокна иннервируют все отделы сосудистой системы, но плотность распределения их в разных тканях различна. Симпатическое сосудосуживающее влияние особенно выражено в почках, тонком кишечнике, селезенке и коже, но гораздо меньше - в скелетных мышцах и головном мозге.

Сосудодвигательный центр головного мозга контролирует сосудосуживающую систему.

Он расположен билатерально в ретикулярной формации продолговатого мозга и нижней трети моста. Сосудодвигательный центр направляет парасимпатические импульсы по блуждающим нервам к сердцу, а также симпатические импульсы через спинной мозг и периферические симпатические нервы практически ко всем артериям, артериолам и венам организма.

Хотя детальные подробности организации сосудодвигательного центра пока не ясны, экспериментальные данные позволяют выделить в нем следующие важные функциональные зоны.

1. Сосудосуживающая зона , расположенная билатерально в верхней переднебоковой части продолговатого мозга. Аксоны нервных клеток, расположенных в этой зоне, проходят в спинной мозг, где возбуждают преганглионарные нейроны симпатической сосудосуживающей системы.

2. Сосудорасширяющая зона , расположенная билатерально в нижней переднебоковой части продолговатого мозга. Аксоны нервных клеток, расположенных в этой зоне, направляются к сосудосуживающей зоне. Они тормозят активность нейронов сосудосуживающей зоны и таким образом способствуют расширению сосудов.

3. Сенсорная зона , расположенная билатерально в пучке одиночного тракта в заднебоковой части продолговатого мозга и моста. Нейроны этой зоны получают сигналы, идущие по чувствительным нервным волокнам от сердечно-сосудистой системы главным образом в составе блуждающего и языкоглоточного нервов. Сигналы, выходящие из сенсорной зоны, контролируют активность как сосудосуживающей, так и сосудорасширяющей зон сосудодвигательного центра.

Так осуществляется рефлекторный контроль над системой кровообращения. Примером может служить барорецепторный рефлекс, контролирующий уровень артериального давления.

Функциональный симпатолиз.

При функциональном симпатолизе гладкомышечные элементы в очаге возбуждения не способны ответить на нервный сигнал при сохранности связи с неврым окончанием. Так проявляется регуляторное влияние симпатической нервной системы, подавляющее активность стимулирующих нервных импульсов.

Большинство внутренних органов иннервируются симпатическими и парасимпатическими нервами (двойная иннервация органа). Влияние носят антагонистический характер: симпатические нервы расширяют зрачок, парасимпатические сужают. Но эти нервы действуют на мышцы: сокращение радиальной в первом случае и круговых во втором ведут к изменению зрачка. Повышение тонуса симпатических нервов ведет к повышению ЧСС, а повышение тонуса парасимпатических – к снижению ЧСС (в условиях эксперимента). В физиологических условиях наблюдается функциональная синергия – увеличение влияний одного отдела и снижение влияний другого вызывают конечный результат (повышение или снижение ЧСС). Существуют органы, иннервируемые только парасимпатическими (слюнные железы) или симпатическими нервными волокнами (печень и почти все кровеносные сосуды). Реакция сосудов на норадреналин различна: сосуды кожи, печени, кишечника сужаются (сокращение гладкомышечных клеток), а кровеносные сосуды скелетных мышц, сердца, бронхов расширяются (расслабление гладкомышечных клеток). Эффект определяется присутствием на гладкомышечных клетках двух типов адренорецепторов: в разных тканях различно соотношение альфа- и бета-адренорецепторов. Первые под влиянием НА или А ведут к сокращению гладких мышц в стенках кровеносных сосудов, вторые – к расслаблению. Особенности гладкомышечной ткани: отдельные клетки веретеновидной формы контактируют при помощи нексусов – участков с низким электрическим сопротивлением, благодаря которым МПД передаются от клетки к клетке. Большинство адренергических нейронов имеют длинный тонкий аксон, который в органе ветвится и образует сплетение до 30 см длиной. На веточках находятся многочисленные расширения (до 300 на 1мм), в которых синтезируется и накапливается НА. При возбуждении нейрона НА выбрасывается во внеклеточное пространство из большого числа расширений и действует на всю гладкомышечную ткань в целом. (Расширения – варикозы образуются не только на концевых ветвлениях, но и на большом протяжении периферических участков в органах и тканях. Это своеобразные синапсы вегетативной нервной системы.) Многие пре- и постганглионарные вегетативные нейроны, иннервирующие кровеносные сосуды, сердце, обладают спонтанной активностью – тонусом. Результат: кровеносные сосуды всегда находятся в состоянии некоторого сокращения - тонуса, что позволяет изменять просвет сосудов и сопротивление току крови.

Симпатический отдел вегетативной нервной системы вызывает: расширение зрачка; расширение бронхов, увеличение диаметра кровеносных сосудов в легких; учащение, усиление сокращений сердца, расширение сосудов сердца; сужение сосудов кожи, органов брюшной полости, уменьшение размеров печени и селезенки, т.е. выход крови из депо и ее перемещение в кровеносное русло; повышает объем циркулирующей крови и артериальное давление; в печени стимулирует гликогенолиз, в крови повышает уровень глюкозы; в жировых клетках стимулирует липолиз, в кровь поступают свободные жирные кислоты; идет стимуляция функции потовых желез, а в почках снижается образование мочи.


Таким образом, симпатическая нервная система мобилизует скрытые резервы, повышает возбудимость ЦНС, усиливает обмен веществ, повышает работоспособность при любом изменении внешней среды (эмоциях, физической и умственной нагрузке, охлаждении и т.д.). Трофическое действие симпатической нервной системы обусловлено метаболическими эффектами на ткани. Доказательство – классические эксперименты Л.А.Орбели и А.Г. Гинецинского: регистрируется амплитуда мышечных сокращений до наступления утомления, при котором амплитуда снижается. Если раздражать симпатические нервы, амплитуда сокращений увеличивается, т.к. стимулируется метаболизм мышечных клеток и соответственно сократительная функция.

Парасимпатическая нервная система способствует восстановлению истраченных организмом ресурсов: приводит к активации функции желудочно-кишечного тракта (секреция, моторика усиливаются), в печени, мышцах происходит отложение гликогена. У человека в ночное время преобладает тонус парасимпатической иннервации, в дневное симпатической.

Вегетативная (автономная) НС – комплекс центральных и периферических клеточных структур, регулирующих функциональный уровень внутренней жизни организма, необходимый для адекватных реакций всех систем.

Главная функция ВНС заключается в поддержании гомеостаза. Вегетативная и соматическая нервная система действуют содружественно. Их нервные центры, особенно на уровне полушарий и ствола головного мозга, невозможно отделить друг от друга, однако периферические отделы этих двух систем совершенно различны.

Периферическая ВНС состоит из двух отделов – симпатического и парасимпатического. Их центры расположены на разных уровнях ЦНС.

Симпатические нервные волокна исходят из грудных и второго, третьего верхних поясничных сегментов спинного мозга. Парасимпатические нервные волокна идут от ствола мозга и крестцовых сегментов.

Симпатическая система иннервирует гладкие мышцы всех органов (сосудов, органов брюшной полости, выделительных органов, легких, зрачка), сердце и некоторые железы (потовые, слюнные и пищеварительные), а также клетки подкожной жировой клетчатки и печени.

Парасимпатическая система иннервирует гладкую мускулатуру и железы желудочно-кишечного тракта, выделительные и половые органы, легкие, а также предсердия, слезные и слюнные железы и глазные мышцы. Парасимпатические нервы не снабжают гладкие мышцы кровеносных сосудов, за исключением артерий половых органов.

Влияние симпатической и парасимпатической системы на эффекторные органы

Многие внутренние органы получают как симпатическую, так и парасимпатическую иннервацию. Влияние этих двух отделов часто носит антагонистический характер (см. табл. 1).

Во многих случаях оба отдела ВНС действуют совместно. Симпатический отдел усиливает работу внутренних органов в экстремальных условиях, а парасимпатический отдел оказывает тормозящее действие на работу этих органов, обеспечивая восстановление показателей после напряженной деятельности, то есть оказывает антистрессорное действие. Так, нервные импульсы, стимулирующие работу сердца, следуют по симпатическим нервам, а тормозящие – по ветвям блуждающего нерва. Пищеварительный канал снабжен активирующими и тормозными нервными волокнами, которые соответственно усиливают и замедляют перистальтику кишечника.

Таблица 1

Действие парасимпатической и симпатической НС

Нервная система

Парасимпатическая

Симпатическая

Сужение зрачка

Расширение зрачка

Не влияет

Сужение сосудов кожи

Снижение частоты и силы сердечных сокращений

Увеличение частоты и силы сердечных сокращений

Артерии внутренних органов

Не влияет

Артерии скелетных мышц

Не влияет

Расширение

Сужение, усиление секреции слизи

Расширение, снижение секреции слизи

Пищеварительный тракт

Усиление моторики, стимуляция выделения слюны и желудочного сока расширение сфинктеров

Снижение моторики, сужение сфинктеров

Мочевой пузырь

Сокращение

Расслабление

Мужские половые органы

Эякуляция

Женские половые органы

Сокращение матки, стимуляция родовой деятельности

Расслабление матки, ослабление родовой деятельности

Обмен веществ

Не влияет

Ускорение расщепления жира в жировой ткани, гликогена в печени

Гомеометрическая регуляция сердца.

Оказалось, что изменение силы сердечного сокращения зависит не только от исходной длины кардиомиоцитов в конце диастолы. В ряде исследований показано увеличение силы сокращения при увеличении ЧСС на фоне изометрического состояния волокон. Это вызвано тем, что возрастание частоты сокращения кардиомиоцитов приводит к увеличению содержания Са2 в саркоплазме мышечных волокон. Все это улучшает электромеханическое сопряжение и приводит к возрастанию силы сокращения.

Иннервация сердца и его регуляция.

Модуляция инотропного, хроно- тропного и дромотропного эффектов вызывается симпатическим и парасимпатическим отделами вегетативной нервной системы. Кардиальные нервы ВНС состоят из двух видов нейронов. Тела первых нейронов расположены в ЦНС, а тела вторых нейронов образуют ганглии за пределами ЦНС. Преганглионарные волокна симпатических нейронов короче постганглионарных, тогда как у парасимпатических наоборот.

Влияние парасимпатической нервной системы.

Парасимпатическая регуляция сердца осуществляется сердечными ветвями правого и левого блуждающих нервов (X парой черепных нервов). Тела первых нейронов локализованы в дорзальном ядре блуждающего нерва продолговатого мозга. Аксоны этих нейронов в составе блуждающего нерва выходят из полости черепа и направляются к интрамуральным ганглиям сердца, где располагаются тела вторых нейронов. Постганглионарные волокна блуждающего нерва в большинстве случаев оканчиваются на кардиомиоцитах СА и АВ узлов, предсердий и внутрипредсердной проводящей системы. У правого и левого блуждающих нервов разное функциональное влияние на сердце. Область распределения правого и левого блуждающих нервов не симметрична и взаимно перекрывается. Правый блуждающий нерв оказывает влияние преимущественно на СА узел. Его стимуляция вызывает снижение частоты возбуждения СА узла. Тогда как левый блуждающий нерв оказывает преимущественное влияние на АВ узел. Возбуждение этого нерва приводит к атриовентрикулярным блокадам разной степени. Действие блуждающего нерва на сердце характеризуется очень быстрой как ответной реакцией, так и ее прекращением. Это вызвано тем, что медиатор блуждающего нерва аце- тилхолин быстро разрушается ацетилхолинэктеразой, которой много в СА и АВ узлах. Более того, ацетилхолин действует через специфические ацетил- холинрегулирующие К" каналы, у которых очень короткий латентный период (50-100 мс).