Дыхательные мышцы совершают работу, равную в покое 1–5 Дж и обеспечивающую преодоление сопротивления дыханию и создание градиента давления воздуха между легкими и внешней средой. При спокойном дыхании на работу дыхательных мышц затрачивается лишь 1 % потребляемого организмом кислорода (ЦНС потребляет 20 % всей энергии). Расход энергии на обеспечение внешнего дыхания незначителен, т.к.:

1. при вдохе грудная клетка расправляется сама за счет собственных упругих сил и способствует преодолению эластической тяги легких;

2. внешнее звено системы дыхания работает подобно качелям (значительная часть энергии сокращения мышц переходит в потенциальную энергию эластической тяги легких)

3. мало неэластическое сопротивление вдоху и выдоху

Выделяют две разновидности сопротивления:

1) вязкое неэластическое сопротивление тканей

2) эластическое (упругое) сопротивление легких и тканей.

Вязкое неэластическое сопротивление обусловлено:

Аэродинамическим сопротивлением воздухоносных путей

Вязким сопротивлением тканей

Более 90 % неэластического сопротивления приходится на аэродинамическое сопротивление воздухоносных путей (возникает при прохождении воздуха через относительно узкую часть дыхательных путей – трахею, бронхи и бронхиолы). Воздухоносные пути по мере ветвления бронхиального дерева к периферии становятся все более узкими и можно предположить, что именно самые узкие ветви оказывают наибольшее сопротивление дыханию. Однако, суммарный диаметр к периферии увеличивается, а сопротивление уменьшается. Так, на уровне поколения 0 (трахея) суммарная площадь сечения около 2,5 см 2 , на уровне терминальных бронхиол (поколение 16) - 180 см 2 , респираторных бронхиол (от 18–го поколения) - около 1000 см 2 и далее >10 000 см 2 . Поэтому сопротивление воздухоносных путей в основном локализовано во рту, носе, зеве, трахее, долевых и сегментарных бронхах приблизительно до шестой генерации разветвления. На периферические воздухоносные пути с диаметром меньше 2 мм приходится менее 20 % сопротивления дыханию. Именно эти отделы обладают наибольшей растяжимостью (С -compliance ).

Податливость, или растяжимость (C) - количественный показатель, характеризующий упругие свойства лёгких

C = DV/ DP

где С - степень растяжимости (мл/см водн.ст.); DV - изменение объёма (мл), DР - изменение давления (см вод.ст)

Общая податливость обоих лёгких (C) у взрослого человека составляет около 200 мл воздуха на 1 см водн.ст. Это означает, что при увеличении транспульмонального давления (P тп) на 1 см водн.ст. объём лёгких увеличивается на 200 мл.


R= (Р А -Р ао)/V

где Р А –альвеолярное давление

Р ао – давление в ротовой полости

V –объемная скорость вентиляции за единицу времени.

Альвеолярное давление не может быть измерено прямым методом, но оно может быть выведено из плеврального давления. Плевральное давление можно определить прямыми методами или косвенно – интегральной плетизмографией.

Таким образом, чем выше V, т.е. чем сильнее мы дышим, тем выше должна быть разница давления при постоянном сопротивлении. Чем выше, с другой стороны, сопротивление воздухоносных путей, тем выше должна быть разница давления для получения данной интенсивности дыхательного потока. Неэластическое сопротивление дыханию зависит от просвета воздухоносных путей - особенно голосовой щели, бронхов. Приводящие и отводящие мышцы голосовых складок, регулирующие ширину голосовой щели, управляются через посредство нижнего гортанного нерва группой нейронов, которые сосредоточены в области вентральной дыхательной группы продолговатого мозга. Такое соседство не случайно: во время вдоха голосовая щель несколько расширяется, на выдохе - сужается, увеличивая сопротивление потоку воздуха, что служит одной из причин большей длительности экспираторной фазы. Подобным же образом циклически меняются просвет бронхов и их проходимость.

Тонус гладкой мускулатуры бронхов зависит от активности ее холинергической иннервации: соответствующие эфферентные волокна проходят в составе блуждающего нерва.

Расслабляющее влияние на бронхиальный тонус оказывают симпатическая (адренергическая) иннервация, а также недавно открытая «неадренергическая тормозная» система. Влияние последней опосредуется некоторыми нейропептидами, а также микроганглиями, обнаруженными в мышечной стенке воздухоносных путей; определенный баланс между этими влияниями способствует установлению оптимального для данной скорости воздушных потоков просвета трахеобронхиального дерева.

Нарушение регуляции бронхиального тонуса у человека составляет основу бронхоспазма, в результате которого резко уменьшается проходимость воздухоносных путей (обструкция) и повышается сопротивление дыханию. Холинергическая система блуждающего нерва участвует также в регуляции секреции слизи и движений ресничек мерцательного эпителия носовых ходов, трахеи и бронхов, стимулируя тем самым мукоцилиарный транспорт - выделение попавших в воздухоносные пути инородных частиц. Избыток слизи, характерный для бронхитов, также создает обструкцию и увеличивает сопротивление дыханию.

Эластическое сопротивление легких и тканей включает: 1) эластические силы самой легочной ткани; 2) эластические силы, вызванные поверхностным натяжением слоя жидкости на внутренней поверхности стенок альвеол и других дыхательных путей легких.

Коллагеновые и эластические волокна, вплетенные в паренхиму легких, создают эластическую тягу легочной ткани. В спавшихся легких эти волокна находятся в эластически сокращенном и скрученном состоянии, но когда легкие расширяются, они растягиваются и расправляются, при этом удлиняются и развивают все большую эластическую тягу. Величина тканевых эластических сил, обуславливающих спадение наполненных воздухом легких, составляет только 1/3 всей эластичности легких

На границе раздела между воздухом и жидкостью, покрывающей тонким слоем эпителий альвеол, возникают силы поверхностного натяжения. Причем, чем меньше диаметр альвеол, тем больше силы поверхностного натяжения. На внутренней поверхности альвеол жидкость стремится к сокращению и выжиманию воздуха из альвеол к бронхам, в результате альвеолы начинают спадаться. Если бы эти силы действовали беспрепятственно, то благодаря соустьям между отдельными альвеолами воздух из малых альвеол переходил бы в большие, а сами малые альвеолы должны были бы исчезать. Для снижения поверхностного натяжения и сохранения альвеол в организме существует сугубо биологическое приспособление. Это – сурфактанты (поверхностно-активные вещества), действующие как детергент.

Сурфактант представляет собой смесь, которая, по существу, состоит из фосфолипидов (90-95 %), включающих, прежде всего, фосфатидилхолин (лецитин). Наряду с этим он содержит четыре специфических для сурфактанта протеина, а также небольшое количество угольного гидрата. Общее количество сурфактанта в лёгких крайне невелико. На 1 м 2 альвеолярной поверхности приходится около 50 мм 3 сурфактанта. Толщина его плёнки составляет 3% общей толщины аэрогематического барьера. Сурфактант образуется альвеолярными эпителиальными клетками II типа. Слой сурфактанта уменьшает поверхностное натяжение альвеол почти в 10 раз. Снижение поверхностного натяжения происходит вследствие того, что гидрофильные головки этих молекул прочно связываются с молекулами воды, а их гидрофобные окончания очень слабо притягиваются друг к другу и другим молекулам в растворе. Отталкивающие силы сурфактанта противодействуют силам притяжения молекул воды.

Функции сурфактанта:

1) стабилизация размера альвеол в крайних положениях – на вдохе и на выдохе

2) защитная роль: защищает стенки альвеол от повреждающего действия окислителей, обладает бактериостатической активностью, обеспечивает обратный транспорт пыли и микробов по воздухоносным путям, уменьшает проницаемость легочной мембраны (профилактика отека легких).

Сурфактанты начинают синтезироваться в конце внутриутробного периода. Их присутствие облегчает выполнение первого вдоха. При преждевременных родах легкие ребенка могут оказаться неподготовленными для дыхания. Недостаток или дефекты сурфактанта вызывают тяжёлое заболевание (синдром дыхательного дистресса). Поверхностное натяжение в лёгких у таких детей высокое, поэтому многие альвеолы находятся в спавшемся состоянии.

Контрольные вопросы

1. Почему расход энергии на обеспечение внешнего дыхания незначителен?

2. Какие виды сопротивления в дыхательных путях выделяют?

3. Чем обусловлено вязкое неэластическое сопротивление?

4. Что такое растяжимость, как ее определить?

5. От каких факторов зависит вязкое неэластическое сопротивление?

6. Чем обусловлено эластическое сопротивление легких и тканей?

7. Что такое сурфактанты, какие функции они выполняют?

Ранняя диагностика респираторных нарушений при заболеваниях легких является чрезвычайно актуальной проблемой. Определение и оценка выраженности нарушений функции внешнего дыхания (ФВД) позволяет поднять диагностический процесс на более высокий уровень.

Основные методы исследования ФВД :

  • спирометрия;
  • пневмотахометрия;
  • бодиплетизмография;
  • исследование легочной диффузии;
  • измерение растяжимости легких;
  • эргоспирометрия;
  • непрямая калориметрия.

Первые два метода считаются скрининговыми и обязательными для использования во всех лечебных учреждениях. Следующие три (бодиплетизмография, исследование диффузионной способности и растяжимости легких ) позволяют оценивать такие характеристики респираторной функции, как бронхиальная проходимость, воздухонаполненность, эластические свойства, диффузионная способность и респираторная мышечная функция. Они являются более углубленными, дорогостоящими методами и доступными только в специализированных центрах. Что же касается эргоспирометрии и непрямой калориметрии , то это довольно сложные методы, которые используются в основном для научных целей.

В настоящее время в Республике Беларусь имеется возможность проведения углубленного исследования функции внешнего дыхания по методике бодиплетизмографии на аппаратуре MasterScreen (VIASYS Healthcare Gmbh, Германия) с определением параметров механики дыхания в норме и при патологии.

Механика дыхания - раздел физиологии дыхания, изучающий механические силы, под действием которых совершаются дыхательные экскурсии; сопротивление этим силам со стороны аппарата вентиляции; изменения объема легких и воздушного потока в дыхательных путях.

В акте дыхания дыхательные мышцы выполняют определенную работу, направленную на преодоление общего дыхательного сопротивления. Сопротивление дыхательных путей можно оценить посредством бодиплетизмографии , а респираторное сопротивление может быть определено с помощью техники форсированных осцилляций .

Общее дыхательное сопротивление складывается из трех составляющих: эластической, фрикционной и инерционной. Эластическая составляющая возникает в связи с упругими деформациями грудной клетки и легких, а также компрессией (декомпрессией) газов и жидкостей в легких, плевральной и брюшной полостях во время дыхания. Фрикционная составляющая отображает действие сил трения при перемещении газов и плотных тел. Инерционная составляющая - преодоление инерции анатомических образований, жидкостей и воздуха; показатель достигает значимых величин только при тахипноэ.

Таким образом, чтобы полностью описать механику дыхания, необходимо рассмотреть соотношение трех параметров - давления (Р), объема (V) и потока (F) на протяжении дыхательного цикла . Поскольку взаимосвязь трех параметров сложна как для регистрации, так и для расчетов, на практике используют соотношение парных показателей в виде индексов или описание каждого из них во времени.

При обычном (спокойном) дыхании активность инспираторных мышц необходима для преодоления сопротивления дыхательной системы. В этом случае достаточно работы диафрагмы (у мужчин) и межреберных мышц (женский тип дыхания). При физической нагрузке или патологических состояниях к работе подключаются дополнительные инспираторные мышцы - межреберные, лестничные и грудино-ключично-сосцевидные . Выдох в покое происходит пассивно за счет эластической отдачи легких и грудной клетки. Работа дыхательных мышц создает градиент давления, необходимый для формирования воздушного потока.

Прямые измерения давления в плевральной полости показали, что в конце выдоха внутриплевральное (внутригрудное) давление на 3-5 см вод. ст., а в конце вдоха - на 6-8 см вод. ст. ниже атмосферного. Обычно измеряют давление не в плевральной полости, а в нижней трети пищевода , которое, как показали исследования, близко по значению и очень хорошо отражает динамику изменения внутригрудного давления. Альвеолярное давление равно сумме давления эластической тяги легкого и плеврального давления и может быть измерено методом перекрытия воздушного потока, когда оно становится равным давлению в ротовой полости. В общем виде уравнение для движущего давления в легких имеет вид:

Ptot = (Е × ΔV) + (R × V") + (I × V""),

  • Ptot - движущее давление;
  • Е - эластичность;
  • ΔV - изменение объема легких;
  • R - сопротивление;
  • V" - объемная скорость потока воздуха;
  • I - инерционность;
  • V"" - ускорение воздушного потока.

Первое выражение в скобках (Е × ΔV) представляет собой давление, необходимое для преодоления эластической отдачи дыхательной системы . Оно равно транспульмональному давлению, которое можно измерить катетером в грудной полости и приближенно равно разнице давлений в ротовой полости и пищеводе. Если одновременно регистрировать объем легких на вдохе и выдохе и внутрипищеводное давление, используя заслонку для перекрытия потока, получим статическую (т. е. при отсутствии потока) кривую «давление - объем», имеющую вид гистерезиса (рис. 1) - кривой, характерной для всех эластических структур.

Кривые «давление - объем » на вдохе и выдохе неодинаковы. При одном и том же давлении объем спадающихся легких больше, чем во время их раздувания (гистерезис ).

Особенностью гистерезиса является то, что для создания определенного объема на вдохе (растяжении) требуется больший градиент давления, чем при выдохе. На рис. 1 видно, что гистерезис не располагается в нулевой точке объема, поскольку легкие изначально содержат объем газа, равный функциональной остаточной емкости (ФОЕ). Отношение между давлением и изменением объема легких не остается постоянным на всем диапазоне легочных объемов. При незначительном наполнении легких это отношение равно Е × ΔV. Константа Е характеризует эластичность - меру упругости легочной ткани. Чем больше эластичность, тем большее давление необходимо приложить для достижения заданного изменения объема легких. Легкое более растяжимо при низких и средних объемах. По достижении максимального объема легкого дальнейший прирост давления увеличить его не может - кривая переходит в ее плоскую часть. Изменение объема на единицу давления отображается наклоном гистерезиса и называется статической растяжимостью (C stat), или комплайенсом . Растяжимость обратно пропорциональна (реципрокна) эластичности (C stat = 1/Е). На уровне функциональной остаточной емкости 0,5 л статическая растяжимость легкого в норме около 200 мл/см вод. ст. у мужчин и 170 мл/см вод. ст. у женщин. Она зависит от многих причин, в том числе, от размера легких. Чтобы исключить последний фактор, вычисляют удельную растяжимость - отношение растяжимости к объему легких, при котором она измеряется, к общей емкости легких (ОЕЛ) а также к функциональной остаточной емкости. Как и для других параметров, для эластичности и растяжимости разработаны должные величины, зависящие от пола, возраста, антропометрических данных пациента.

Эластические свойства легких зависят от содержания эластических структур в тканях. Геометрическое расположение нитей эластина и коллагена в альвеолах, вокруг бронхов и сосудов наряду с поверхностным натяжением сурфактанта придают легким эластические свойства. Патологические процессы в легких изменяют эти свойства. Статическая растяжимость у пациентов с обструктивными заболеваниями близка к норме, если паренхима легких мало затронута при этих заболеваниях. У пациентов с эмфиземой нарушение эластической отдачи легких сопровождается увеличением их растяжимости (комплайенса). Бронхиальная обструкция в свою очередь может приводить к изменению воздухонаполненности (или структуры статических объемов) в сторону гипервоздушности легких. Основным проявлением гипервоздушности легких или увеличения их воздухонаполненности является увеличение общей емкости легких , полученной при бодиплетизмографическом исследовании или методом разведения газов. Один из механизмов повышения общей емкости легких при хронической обструктивной болезни легких (ХОБЛ) - снижение давления эластической отдачи по отношению к соответствующему легочному объему. В основе развития синдрома гипервоздушности легких лежит еще один важный механизм. Повышение легочного объема способствует растяжению дыхательных путей и, следовательно, повышению их проходимости. Таким образом, возрастание функциональной остаточной емкости легких представляет собой своего рода компенсаторный механизм, направленный на растяжение и увеличение внутреннего просвета бронхов. Однако подобная компенсация идет в ущерб эффективности работы респираторных мышц вследствие неблагоприятного соотношения «сила - длина». Гипервоздушность средней степени выраженности приводит к снижению общей работы дыхания, так как при незначительном повышении работы вдоха имеет место существенное снижение экспираторного вязкостного компонента. Отмечается также изменение формы и угла наклона петли «давление - объем». Кривая статистической растяжимости сдвигается вверх и влево. При эмфиземе, которая характеризуется утратой соединительнотканных компонентов, эластичность легких снижается (соответственно, статическая растяжимость увеличивается). Для выраженной ХОБЛ характерно увеличение функциональной остаточной емкости, остаточного объема (ОО) и отношения ОО к общей емкости легких. В частности, общая емкость легких увеличена у пациентов с тяжелой эмфиземой. Увеличение статической легочной растяжимости, снижение давления эластической тяги легкого при данном объеме легкого и изменение формы кривой «статическое давление - объем легкого» характерны для эмфиземы легких. У многих пациентов с ХОБЛ максимальное инспираторное и экспираторное давление (PI max и PE max) снижены. В то время как PEmax снижено вследствие гиперинфляции и укорочения инспираторных дыхательных мышц, PE max менее подвержено влиянию изменений механики дыхания. Снижение PE max может быть связано со слабостью мускулатуры, что обычно имеет место при прогрессирующей ХОБЛ. Измерение максимальных респираторных давлений показано при наличии подозрений на плохое питание или стероидную миопатию, а также в тех случаях, когда степень диспноэ или гиперкапнии не соответствует имеющемуся объему форсированного выдоха за первую секунду.

При рестриктивных легочных заболеваниях , напротив, изменяется структура легочных объемов в сторону снижения общей емкости легких. Это происходит, главным образом, за счет уменьшения жизненной емкости легких. Эти изменения сопровождаются снижением растяжимости легочной ткани. Фиброз легких, застойная сердечная недостаточность, воспалительные изменения уменьшают комплайенс. При дефиците нормального сурфактанта (респираторном дистресс-синдроме) легкие становятся неподатливыми, ригидными.

При эмфиземе показатели диффузионной способности легких DLCO и ее отношения к альвеолярному объему DLCO/Va снижены, главным образом вследствие деструкции альвеолярнокапиллярной мембраны, уменьшающей эффективную площадь газообмена. Однако снижение диффузионной способности легких на единицу объема (DLCO/Va) (т. е. площади альвеолокапиллярной мембраны) может быть компенсировано возрастанием общей емкости легких. Для диагностики эмфиземы исследование DLCO показало себя более информативным, чем определение легочной растяжимости, а по способности к регистрации начальных патологических изменений легочной паренхимы данный метод сопоставим по чувствительности с компьютерной томографией.

У злостных курильщиков , составляющих основную массу больных ХОБЛ, и у пациентов, подвергающихся профессиональному воздействию окиси углерода на рабочем месте, отмечается остаточное напряжение СО в смешанной венозной крови, что может привести к ложно заниженным значениям DLCO и его компонентов.

Расправление легких при гипервоздушности приводит к растяжению альвеолярно-капиллярной мембраны, уплощению капилляров альвеол и возрастанию диаметра «угловых сосудов» между альвеолами. В результате общая диффузионная способность легких и диффузионная способность самой альвеолокапиллярной мембраны возрастают с объемом легких, но соотношение DLCO/Va и объем крови в капиллярах (Qc) уменьшаются. Подобный эффект легочного объема на DLCO и DLCO/VA может приводить к неправильной интерпретации результатов исследования при эмфиземе.

При рестриктивных легочных заболеваниях характерно значительное снижение диффузионной способности легких (DLCO). Отношение DLCO/Va может быть снижено в меньшей степени из-за одновременного значительного уменьшения объема легких.

Большее клиническое значение имеет измерение динамической растяжимости (C dyn), когда рассматривают изменение объема легких относительно изменения давления при наличии воздушного потока. Оно равно наклону линии, соединяющей точки начала вдоха и выдоха на кривой «динамическое давление - объем» (рис. 2).

Если сопротивление дыхательных путей нормальное, C dyn близка по величине к C stat и слабо зависит от частоты дыхания. Уменьшение C dyn по сравнению с C stat может свидетельствовать о негомогенности легочной ткани. При увеличении сопротивления, даже незначительном и ограниченном мелкими бронхами, Cdyn снизится раньше, чем это нарушение будет выявлено обычными функциональными методами. Снижение C dyn особенно проявится при высокой частоте дыхания, так как при частом дыхании время, необходимое для наполнения легкого или его части с обструкцией, становится недостаточным. Изменения Cdyn, зависящие от частоты дыхания, называются частотно-зависимой растяжимостью. В норме C dyn /C stat больше 0,8 при любой частоте дыхания.

При обструкции, в том числе дистальной, это отношение падает с увеличением частоты дыхания. Величина C stat , в отличие от C dyn , зависит не от частоты дыхания, а от его глубины, точнее, от уровня жизненной емкости легких (ЖЕЛ), на котором она регистрировалась. Измерения Cstat на уровне спокойного дыхания дают минимальное значения, при глубоком вдохе величина C stat максимальна. При проведении измерения компьютерная программа вычисляет C stat на различных уровнях ЖЕЛ и строит график зависимости объема легких от внутригрудного (внутрипищеводного) давления. При эмфиземе легких такая кривая будет иметь более крутой наклон (C stat увеличивается), при легочных фиброзах - более пологий (C stat снижается).

Помимо рассмотренных показателей C stat , C dyn исследование дает возможность получить ряд других измеренных и производных величин (рис. 3). Важными показателями, которые мы получаем при измерении растяжимости легких, являются Pel - транспульмональное (пищеводное) давление, которое отражает давление эластической отдачи легких; P 0dyn - давление на уровне функциональной остаточной емкости; Pel RV - давление на уровне остаточного объема; PTL/IC - отношение транспульмонального (пищеводного) давления к емкости вдоха; P0stat, Pel 100, Pel 80, Pel 50 - транспульмональное (пищеводное) давление при глубине вдоха соответственно на уровне функциональной остаточной емкости, ЖЕЛ, 80% ЖЕЛ, 50% ЖЕЛ. Для получения производных величин - отношения комплайенса к функциональной остаточной емкости, внутригрудному объему или общей емкости легких, важность которых определяется тем, что растяжимость легких зависит от их размеров, эти показатели необходимо предварительно измерить (например, при проведении бодиплетизмографии). Отношение С (растяжимости) к общей емкости легких именуют индексом ретракции. Следует отметить, что хотя для всех вышеперечисленных величин предложены формулы расчета должных величин, индивидуальные различия весьма значительны. Используя петлю «давление-объем», можно рассчитать работу по преодолению упругих и вязких сил (эластического и неэластического сопротивления). Площадь условного прямоугольного треугольника, гипотенузой которого является прямая, соединяющая точки смены фаз дыхания, а сторонами - проекции на оси координат (рис. 3), равна работе дыхательных мышц по преодолению эластического сопротивления легких.

Площадь фигуры под гипотенузой соответствует работе вдоха по преодолению аэродинамического (бронхиального) сопротивления. Показатель работы дыхания сильно зависит от минутного объема дыхания, его частоты и глубины и может варьироваться от 0,25 кгм/мин до 15 кгм/мин. В норме около 70% общей работы расходуется на преодоление эластического и 30% - неэластического (аэродинамического) сопротивления. Их соотношение позволяет уточнить преобладание обструктивных или рестриктивных нарушений. Уменьшению энерготрат способствует поверхностное (но частое) дыхание, что мы наблюдаем в клинике у больных с выраженными фиброзными изменениями, или медленное дыхание у больных с тяжелой обструкцией. Измерение комплайенса позволяет не только установить степень поражения легких, но и наблюдать динамику патологического процесса, контролировать лечение. Прежде всего, это важно при хронических распространенных поражениях легких, обусловленных идиопатическими интерстициальными пневмонитами, ревматическими, профессиональными и другими заболеваниями легких. Особая ценность метода в том, что изменения растяжимости могут быть выявлены на ранних стадиях как обструктивных, так и рестриктивных нарушений, которые не фиксируются другими методами исследований, что важно для раннего выявления заболеваний легких.

Лаптева И. М., Томашевский А. В.
Республиканский научно-практический центр пульмонологии и фтизиатрии.
Журнал «Медицинская панорама» № 9, октябрь 2009.

Эластическое сопротивление - (Elastance).

Эластическое сопротивление респираторной системы определяется суммой сопротивлений собственно легочной ткани и грудной стенки с диафрагмой. Однако, удельная величина этих сопротивлений неодинакова в разных возрастных группах. У здоровых взрослых сопротивление грудной клетки и диафрагмы составляет около 50% от общего, у годовалых детей - 30%, у доношенных новорожденных - 20%, у недоношенных новорожденных всего 10%. Поэтому крайне податливая грудная клетка у недоношенных вслед за легкими спадается сильнее, чем у доношенных детей. Этому способствует увеличенная эластическая тяга легких за счет повышенного поверхностного натяжения в альвеолах и дистальных бронхиолах, что связано с дефицитом сурфактанта. Это приводит к снижению ФОЕ и ателектазированию части альвеол и бронхиол с одной стороны, и к развитию ЭЗДП и появлению «воздушных ловушек» в хорошо вентилируемых зонах с другой стороны. И, напротив, у пожилых пациентов грудная клетка становится ригидной, поэтому и сопротивление ее к растяжению значительно возрастает. Эластическое сопротивление принято оценивать через обратную ему величину, то есть растяжимость (или податливость), обозначаемую С - (compliance). Податливость отражает отношение изменения объема (Д V) к изменению давления (ДР), выраженное в литрах на см Н2О (для удобства в мл/см Н2О). С = ДV/ДP.

Податливость респираторной системы зависит от следующих факторов:

  • - Содержания в легочной ткани эластических и коллагеновых волокон.
  • - Поверхностного натяжения пленки жидкости, выстилающей альвеолы, которое определяется количеством сурфактанта (у недоношенных дефицит сурфактанта)
  • - Эластичности дыхательных путей и сосудов легких.
  • - Объема крови в сосудах легких.
  • - Состояния гидратации легочного интерстиция.
  • - Состояния плевральных полостей. Наличие в них воспалительного экссудата, крови, лимфы, транссудата, инфузата или воздуха ограничивает С .
  • - Состояния диафрагмы. Высокое стояние диафрагмы при парезе кишечника, перитоните, диафрагмит, диафрагмальные грыжи - важные факторы рестрикции

Изменение объема легких при вдувании в них газа нелинейно по отношению к изменению давления этого газа. Эта зависимость выражается в виде кривой P/V (давление/объем) инспираторной. При опорожнении легких эта зависимость отражается кривой P/V экспираторной, которая по форме не совпадает с кривой вдоха. Таким образом, на графике возникает «петля P/V». Это несовпадение связано с тем, что при одинаковом объеме газа в легких, во время вдоха давление газа выше, чем во время выдоха (Pi > Pe). Это явление получило название гистерезис. Объясняется гистерезис потерей энергии на преодоление сил поверхностного натяжения альвеол, на растяжение эластических элементов легочной ткани и вязкостного (тканевого) сопротивления, то есть на преодоление сил внутритканевого трения. Петля P/V может иметь различные конфигурации, в зависимости от механических свойств легких (податливости), величины ФОЕ, а также объемов и давлений, применяемых при вдувании газа. Влияние ФОЕ на конфигурацию петель P/V иллюстрируется рис. 1. Таким образом, даже поверхностный взгляд на конфигурацию петли P/V без анализа цифровых данных позволяет получить представление о легочной механике пациента. Некоторые отечественные авторы недооценивают информацию, получаемую при анализе петель P/V и V/F, и считают, что достаточно оценивать графики давления и потока, к примеру, Царенко С. В. 2007. Однако, многие сотни публикаций в мировой литературе по интенсивной терапии за последнее десятилетие посвящены именно анализу петель и клинической интерпретации полученной информации.

Измерения растяжимости респираторной системы пациентов в клинике могут выполняться различными методами.

При статических методах (применяемых у взрослых) пациент отключается от аппарата ИВЛ, после 5 секундного выдоха в легкие медленно, ступенчато вдувается 3 литра кислорода (либо вдувание продолжается до достижения давления в 45см Н2О), измерения давления проводятся в отсутствии потоков газа (для исключения влияния аэродинамического сопротивления) через каждые 50-100 мл объема, как во время вдоха, так и во время выдоха. Таким образом выстраивается петля P/V. Cтатические методы (подробности в спец. литературе) весьма громоздки, требуют наличия специальной аппаратуры, выполняются в условиях миоплегии и седации, а измерения занимают не менее 45 секунд, что неприемлемо для детей раннего возраста. Но информация, полученная таким образом, является точной, объективной и отражает истинную растяжимость респираторной системы, если в расчетах используется трансторакальное давление (PIP плато - Ратм, которое принимается за ноль). Для измерения растяжимости собственно легких используется транспульмональное давление (PIP плато - Р плевральное). За плевральное давление принимается внутрипищеводное, для измерения которого нужны специальные датчики (баллонные).

Квазистатические методы тоже выполняются в условиях миоплегии и седации в условиях постоянного низкоскоростного потока в контуре пациента (обычно менее 9 литров в минуту). При этом аэродинамическое сопротивление дыхательных путей почти не влияет на конфигурацию петли, так как величина его незначительна. Пациента не отсоединяют от аппарата ИВЛ, а измерения занимают меньше времени (около 30 секунд). Информация с дыхательного монитора выводится на принтер, как графическая, так и цифровая. Все что для выполнения квазистатического измерения растяжимости респираторной системы требуется - наличие в аппарате ИВЛ генератора постоянного потока и программное обеспечение, а также дыхательный монитор с принтером. Все вентиляторы 4-5 поколений имеют такое программное обеспечение, которое является опцией. При использовании потоков менее 5 литров квазистатические графики полностью совпадают со статическими, однако, измерения занимают больше времени.

В настоящее время в развитых странах измерения растяжимости респираторной системы у вентилируемых пациентов с легочной патологией являются рутинными и обязательными, особенно у больных с ARDS. Параметры ИВЛ устанавливаются на основании анализа полученных графиков и цифровой информации.

Типичная петля P/V при ARDS у взрослых представлена на рис. 2. На кривой вдоха, которая имеет S-образную форму, выделяют две точки, после которых резко изменяется растяжимость респираторной системы. Между этими точками прирост объема легких носит относительно линейный характер (в виде прямой). У разных авторов эти точки называются по-разному, но наиболее часто они именуются «точками перегиба»: нижней - LIP (low inflection point) и верхней - UIP (upper inflection point). «Классическая» интерпретация формы кривой вдоха объясняет наличие LIP низкой ФОЕ и массивным раскрытием спавшихся альвеол и мелких дыхательных путей (recruitment), а наличие UIP полным раскрытием альвеол и началом их перерастяжения, так как прирост объема становится незначительным, по сравнению с приростом давления. OLC- open lung concept (концепция открытого легкого) предложенная в 1993г предусматривала установление РЕЕР у больных с ARDS на уровне LIР+2см (в среднем 12см Н2О), что стало стандартной практикой 90х и начала XXI века. Однако, не все авторы согласны с таким принципом подбора оптимальных значений РЕЕР (the best PEEP). Holzapfel L. et al 1983; заявили, что LIP является «неправильной» точкой, а «истинная» точка расположена на кривой выдоха - СРР (collapse pressure point) от которой легкие начинают быстро терять объем. Такого же мнения придерживаются Rimensberger P. et al 1999; Эти авторы считают, что для раскрытия ателектазов нужно большее давление, чем для поддержания альвеол в открытом состоянии. Отсутствие LIP на инспираторной ветви кривой P/V у больных с ARDS (или даже отрицательная кривизна начального участка) свидетельствует о негомогенном характере повреждения легких, то есть о достаточной ФОЕ и наличии значительного количества нормально вентилируемых (легко рекрутируемых) альвеол, что подтверждалось данными КТ легких. У таких больных высокие значения РЕЕР при ИВЛ приводили к выраженному перерастяжению легких и волюмтравме за счет увеличения ФОЕ и конечного инспираторного объема (Vieira S. et al 1999;).

Важность UIP заключается в возможности профилактировать повреждение легких высоким объемом - волюмтравму. PIP или Vt, в зависимости от способа ИВЛ (контроль давления или объема) должны ограничиваться значениями не выше этой точки. Иногда UIP четко не выявляется на графике, что, однако, не свидетельствует об отсутствии перерастяжения альвеол. Hickling K. et al 1998; объясняют это продолжающимся раскрытием «медленных» альвеол.

Существует 4 графических способа определения «правильной» локализации LIP и UIP. На самом деле изменения растяжимости происходят более плавно и точки эти не всегда четко видны на кривой P/V. Во избежание ошибок Harris R.S. et al 1999; предложили их математическое вычисление методом регрессивного анализа. К настоящему времени уже разработан математический аппарат для вычисления различных коэффициентов и индексов при анализе петли P/V. Например, HA - hysteresis area (вычисление площади петли P/V) и HR - hysteresis ratio (отношение НА к площади прямоугольника, в который эта петля вписывается), по которым оценивают эффект от проведения рекрутирующих маневров. Вполне вероятно, что в недалеком будущем программа полного математического анализа графиков P/V будет вводиться в дыхательные мониторы.

Динамическая растяжимость респираторной системы - Cdyn определяется в реальном времени у постоянно дышащего пациента и выводится на дисплей дыхательного монитора. На результаты измерения влияет Raw тем больше, чем выше частота дыхательных циклов, а, следовательно, короче время вдоха и выдоха. При этом не все отделы легких успевают вентилироваться (только «быстрые» альвеолы) и велика вероятность недостаточного опорожнения легких и возникновения «воздушных ловушек», то есть увеличения ФОЕ. Кроме того, у младенцев Raw значительно выше из-за малого калибра дыхательных путей. Поэтому статическая растяжимость респираторной системы всегда выше динамической.

Cdyn = Vt/PIP - PEEP.

На результаты измерений у младенцев сильно влияет величина утечки газа между интубационной трубкой и трахеей (которая завышает Vt). Датчик потока должен присоединяться непосредственно к коннектору ИТ. Собственно, Cdyn не является показателем «истинной» растяжимости респираторной системы, а отражает ее состояние при данных конкретных параметрах ИВЛ. Некоторые авторы, поэтому, считают, что понятие Cdyn является неправомерным, а следует употреблять термин «динамические характеристики легких».

Тем не менее, наблюдение за петлей P/V на дисплее дыхательного монитора в динамике дает много полезной информации, так как закономерности изменения ее конфигурации во многом соответствуют тем, что были получены статическими методами, в частности помогает предотвратить перерастяжение легких.

На рис. 3 представлены типичные «динамические» конфигурации петель P/V:

  • А) Здоровые легкие. Физиологические параметры ИВЛ.
  • В) Перерастяжение здоровых легких избыточным Vt.

C) Снижение растяжимости, ФОЕ снижена.

D) Снижение растяжимости, ФОЕ снижена, перерастяжение легких высоким Vt.

E) Снижение растяжимости, ФОЕ повышена.

Снижение растяжимости респираторной системы, вне зависимости от причины, проявляется снижением угла наклона петли к оси давления. Клиницисты называют такую петлю «лежачей». При снижении растяжимости легких, связанном с увеличением количества воды в интерстиции и сниженной ФОЕ, всегда возрастает гистерезис. При такой петле клиницисты называют легкие «жесткими» (если причина не связана с патологией в животе и плевральных полостях).

Изменение растяжимости легких у недоношенных с RDS после применения сурфактанта может произойти очень быстро. При этом ИВЛ с установленными первоначально параметрами вызовет развитие волюмтравмы и гипервентиляции. Это, в свою очередь, приведет к развитию респираторного алкалоза, что чревато серьезными последствиями. Избежать подобных осложнений можно, оценивая динамику изменений петли P/V и проводя своевременную коррекцию параметров вентиляции.

Нормальные значения С у здоровых взрослых 50 - 80мл/см Н2О, у здоровых новорожденных (по данным разных авторов) 3 - 6мл/см Н2О. К годовалому возрасту С увеличивается в 1,5 раза. У недоношенных детей с RDS С может снижаться менее 0,5мл/см Н2О.

Абсолютные значения С у взрослых и детей раннего возраста невозможно сравнивать из-за большой разницы в объеме легких. Однако, эта разница устраняется, если учитывать отношение растяжимости к объему ФОЕ. Этот показатель - С/ФОЕ называется удельной растяжимостью. У взрослого и годовалого ребенка эти величины одинаковы. У новорожденных удельная растяжимость ниже.

Все разнообразие нарушений легочной механики определяется сочетанием нарушений Raw и С. При преобладании нарушений Raw имеет место обструкция, а при преобладании нарушений С - рестрикция. Довольно часто имеет место сочетание этих нарушений в равной степени, либо с преобладанием того ли иного компонента. К примеру: при накоплении жидкости в легочном интерстиции снижается растяжимость, но отек начинает сдавливать дыхательные пути, лишенные хрящевого каркаса, увеличивая Raw. Существуют и характерные клинические признаки, позволяющие «на глаз» определить у младенца преобладание рестриктивного или обструктивного компонентов дыхательной недостаточности. Одышка при преобладании рестрикции отличается высокой частотой, дыхание поверхностное с участием вспомогательной мускулатуры на вдохе с выраженным втяжением податливых мест грудной клетки, при аускультации хрипы и «хрюканье». При преобладании интраторакальной обструкции одышка отличается меньшей частотой, втяжения уступчивых мест грудной клетки отмечаются не всегда, вспомогательная мускулатура участвует как во вдохе, так и выдохе (напряжение мышц живота), может быть снижение амплитуды дыхательных экскурсий, а грудная клетка вздута (в состоянии вдоха), выдох заметно удлинен, при аускультации во время выдоха фонация - экспираторный стридор. Рентгенологически: при рестрикции снижен объем легких и повышена «плотность» легочной ткани, при обструкции объем легких повышен, а легочная ткань повышенно «прозрачна».

Незначительное сопротивление дыханию при применении противогаза не оказывает отрицательного физиологического действия: оно вызывает замедление ритма и увеличение глубины дыхания. Увеличение сопротивления И длительное преодоление сопротивления дыханию вызывает утомление дыхательных мышц, которое особенно заметно на мышцах, обеспечивающих выдыхание, поскольку при нормальном дыхании эти мышцы вообще мало активны.

При значительном сопротивлении легкие не успевают засасывать и выдыхать достаточное количество воздуха, чтобы обеспечить нормальный газообмен, в частности, достаточное удаление углекислого газа. Накопление в крови углекислого газа вызывает усиленное раздражение дыхательного центра, который реагирует на раздражение ускорением дыхания. Из-за этого, с одной стороны, и из-за сопротивления, которое стремится, наоборот, замедлить дыхание, - с другой, оно становится поверхностным, в результате чего наступает дальнейшее ухудшение вентиляции легких и усиление раздражения дыхательного центра.

Автоматическое регулирование ритма дыхания происходит благодаря блуждающему нерву, разветвления которого - эфферентные или чувствительные волокна - раздражаются при расширении грудной клетки и передают дыхательному центру импульс, прекращающий вдох и вызывающий расслабление мышц. Усиленное раздражение дыхательного центра вызывает быстрое ого утомление, вследствие чего даже слабые начальные импульсы со стороны блуждающего нерва вызывают реакцию дыхательного центра, и акт вдоха, не доведенный до конца, сменяется актом выдоха. Если человеку при этом приходится выполнять мускульную работу, требующую усиленной вентиляции легких, то отрицательное влияние сопротивления усиливается и может повлечь за собой явления аноксемии и асфиксии.

Сопротивление дыханию на выдохе переносится труднее, чем сопротивление на вдохе. При продолжительной работе (3-4 часа),соответствующей потреблению кислорода до 2 л/мину максимальным сопротивлением на выдохе, измеряемым в момент наибольшей скорости движения воздуха, которое не вызывает еще расстройства дыхания, является сопротивление в 60-80 мм вод. ст. на скоростных пиках. Сопротивление в 80-100 мм при тех же условиях уже нежелательно, хотя и допустимо, если это сопротивление включается не постоянно, а периодически, т. е. если периоды работы чередуются с периодами отдыха. Сопротивление свыше 200 мм вод. ст. уже переносится с большим трудом даже в течение нескольких минут. Одним из движущих факторов в развитии респираторостроения является стремление возможно больше снизить сопротивление системы противогаза дыханию.

Сопротивление противогазов часто определяется путем пропускания через них потока воздуха с постоянной скоростью, соответствующей средней объемной скорости вентиляции легких. Получаемые при этом величины сопротивления значительно меньше величин избыточного давления и разрежения, получающихся в действительности во время дыхания в противогазе. Это происходит по следующим причинам: количество воздуха, которое проходит через легкие в единицу времени, попеременно то вдыхается, то выдыхается, вследствие чего объемная скорость воздуха, протекающего через дыхательные пути, увеличивается вдвое; вдохи и выдохи протекают не с равномерной скоростью, а с возрастающей и затухающей скоростями, благодаря чему и сопротивление на скоростных пиках вдоха достигает максимумов, значительно превосходящих средние величины; фаза вдоха отделяется от фазы выдоха небольшой паузой, что также увеличивает моментные скорости движения воздуха в дыхательных путях.

На рис. 51 показаи график изменения сопротивления противогаза дыханию при объеме вентиляции 50 л/мин. Сплошной кривой показано изменение моментной скорости вдоха (в л/сек), штриховой - соответствующие: изменения сопротивления (в мм вод. ст.), штриховая прямая изображает постоянную среднюю скорость воздуха 0,8 л/сек, соответствующую легочной вентиляции 50 л/мин, а пунктирная прямая - сопротивление противогаза при испытании на постоянном потоке. Ввиду того что при вентиляции 50 л/мин пауза между фазами вдоха и выдоха весьма мала, она на графике не показана.

Рис. 51. График сопротивления противогаза в зависимости от режима и скорости воздушного потока

Из графика видно, что скорость движения воздуха зависит от длительности фазы дыхания; поскольку длительность вдоха (нижняя половина графика) меньше длительности выдоха, скорость воздуха на вдохе больше.

Зависимость сопротивления движению воздуха по круглым воздуховодам (суммарное сопротивление трения и местных сопротивлений) от скорости может быть выражена формулой:

(56)

где Н-сопротивление в мм вод. ст.(или кг/м2); β - коэффициент сопротивления, зависящий от числа Реннольдса, т. е. от отношения произведения скорости воздуха на диаметр воздуховода к кинематической вязкости воздуха и от эмпирической константы, определяемой для каждого типа воздуховода и местных сопротивлений; γ - удельный вес воздуха, кг/м3; g - ускорение силы тяжести, 9,81 м/сек2; l - длина воздуховода, м; Р и S - соответственно его периметр и сечение, м и м2; υ - линейная скорость течения воздуха, м/сек.

Поскольку P/S=4/d

(57)

Вводя понятие удельного сопротивления h=2βγ/g, получаем для случая турбулентного (вихревого) движения воздуха через воздухопроводы противогаза

Исследование сопротивления фильтрующих коробок, снаряженных твердыми дроблеными или гранулированными поглотителями, показало, что оно с достаточным приближением может быть подсчитано по формуле, характеризующей ламинарное (слоистое) течение воздуха в малых каналах между зернами фильтрующей среды:

где υ 1 - удельная объемная скорость воздуха в л/мин·см2, которая легко может быть приведена, для сравнимости с предыдущей формулой, к линейной скорости, м/сек; d 1 - диаметр зерен поглотителя, который может быть выражен через диаметр воздуховодов между зернами. На практике, в последнем случае l и d 1 выражают в см, υ 1 - в л/мин·см2.

Таким образом, поскольку сопротивление противогаза складывается из сопротивления его воздуховодов, местных сопротивлений и сопротивления регенеративного или фильтрующего патрона, суммарное сопротивление должно быть:

H = xυ n , (60)

где x - коэффициент пропорциональности, учитывающий как коэффициент сопротивления, так и значения для различных частей противогаза, а n - для противогазов различных конструкций может принимать значение от 2 (для шлангового респиратора) до значений близких к 1 (для фильтрующих самоспасателей без соединительного шланга). Для изображенного на графике случая дыхания в изолирующем противогазе со сжатым кислородом n близко к 1,7 и x= 25 мм, вод. ст., при выражении υ в л/сек.

Повышенный интерес к мониторингу параметров механики дыхания в последнее время связан с появлением многофункциональных («интеллектуальных») респираторов и обусловлен несколькими причинами.
Во-первых , эти респираторы позволяют регистрировать и отражать в виде графиков ряд важных, недоступных для большинства прежних респираторов, биомеханических параметров, таких как скорость газового потока, эластическое сопротивление дыхательных путей (торако-пульмональный комплайнс) и других.

Во-вторых , эти вентиляторы позволяют реализовать и представить в виде графиков различные варианты потока газовой смеси, влияющие на величины давления в дыхательных путях и отражающиеся на состоянии ряда вентиляционных параметров.

В-третьих , эти респираторы позволяют реализовать различные режимы респираторной поддержки, от традиционной механической вентиляции (CMV) до целого ряда режимов вспомогательной вентиляции, таких как синхронизированная вентиляция (SIMV), вентиляция поддержкой давлением (PCV), спонтанное дыхание с постоянным положительным давлением (СРАР, BIPAP) и др. Эти режимы направлены на оптимизацию механики дыхания пациента, в частности, на максимально экономный расход энергии дыхательных мышц (работу дыхания), ибо повышенной работе дыхательных мышц неизменно сопутствует повышенный расход кислорода, запасы которого в организме крайне ограничены.

У здорового человека с нормальной биомеханикой для поддержания спокойного дыхания затраты потребляемой энергии составляют всего 2 % от всех затрат энергии для поддержания жизнедеятельности организма. При повышенной функциональной нагрузке органов дыхания (мышечная работа, возрастание метаболических процессов), а также при патологии легких (обструктивные заболевания, паренхиматозные поражения) механика дыхания претерпевает существенные изменения, что приводит к значительному возрастанию работы дыхания и увеличению потребления кислорода. Существует даже специальный термин, характеризующий этот процесс, - «кислородная стоимость или цена дыхания».

В процессе дыхательного цикла основные затраты работы дыхания направлены на преодоление механического сопротивления движению газовой смеси по . Известны девять видов механического сопротивления, которые должна преодолевать работа дыхания.

Аэродинамическое сопротивление обусловлено наличием силы трения между молекулами газовой смеси и поверхностью дыхательных путей. Аэродинамическое сопротивление увеличивается при обструктивных поражениях дыхательной системы (отек слизистой бронхов, бронхоспазм, хронические воспалительные заболевания легких и др.). Частным случаем аэродинамического сопротивления является сопротивление, не связанное непосредственно с системой органов дыхания (приложенное извне), например, сопротивление интубационной трубки или трахеотомической канюли.

Эластическое сопротивление связано с наличием эластического каркаса грудной клетки и легких, на преодоление которого необходимо затратить работу во время вдоха. Оно увеличивается при повышении жесткости дыхательной системы, например, при отеке легких, паренхиматозных поражениях (пневмония, респираторный дистресс синдром и др.). В понятии «эластическое сопротивление» объединяется еще целый ряд различных видов сопротивлений, имеющих существенно меньшее практическое значение. Это вязкостно-эластическое, пластическо-эластическое сопротивление, сопротивление, обусловленное инерционностью, гравитацией, сжатием газов при обструкции дыхательных путей, сопротивление, обусловленное деформацией дыхательных путей.

Таким образом, в практической работе из параметров, характеризующих механику дыхания, помимо традиционных параметров, таких как:
дыхательный (VT) и минутный (VE) объемы вентиляции;
давление в дыхательных путях (Р);
частота дыхания (RR);
продолжительность фаз дыхательного цикла (1:Е). Целесообразно мониторировать дополнительно еще:
скорость газового потока (у);
аэродинамическое сопротивление дыхательных путей - резистанс (R);
растяжимость системы легкое-грудная клетка - комплайнс (С).