В основе лазерной хирургии лежит использование усовершенствованных технологий. Они представляют собой устройства, содержащие газовую среду (углекислый газ, ксенон или аргон), и восстанавливающие мощные световые лучи.

Существует два вида лазеров. Низкочастотные лазеры применяются в терапии и служат для лечения многих заболеваний, начиная и заканчивая устранением раковых клеток. Свое наибольшее распространение высокочастотные лазеры нашли в операциях по и удаления рубцов.

Лазерная является практически бескровной (лазер прижигает поверхность сосудов) и не оставляет после себя рубцов и . Заживление ран после нее происходит за счет регенерации нормальной структуры кожного покрова. Сами раны продолжительное время остаются стерильными, а развитие воспалительного процесса сводится к минимуму.

Самыми первыми «клиентами» лазерной хирургии были по лечению аномалий глаз (дальнозоркости, близорукости, астигматизма и других патологий). Ткани глаза являются идеальными поверхностями, на которых можно сфокусировать лучи лазера.

Сами операции не считаются сложными. Последние модели лазеров обеспечивают безболезненность работы, возможность ее проведения на обоих глазах за один день и кратковременный реабилитационный период.

При помощи лазерной хирургии также можно устранить и многие другие заболевания, среди которых хочется отметить: злокачественные образования кожи, некоторые злокачественные болезни красной каймы губ или слизистой оболочки полости рта, ЛОР-заболевания, сосудистые, гнойно-воспалительные болезни кожи и подкожно-жировой клетчатки, а также нарушения женской половой сферы.

Лазерная хирургия активно применяется в косметологии и пластической хирургии. Она дает возможности устранить множество проблем, еще недавно казавшихся неразрешимыми, корректировать почти любые недостатки своего тела. К таким процедурам относят лазерную эпиляцию, удаление татуировок, пигментных пятен, бородавок, подкожных сосудов, родинок, послеоперационных рубцов, папиллом, растяжек, хирургию вросшего ногтя и лазерную шлифовку кожи.

В зависимости от вида операции применяются один или более видов лазерных лучей. Подбирается индивидуальная программа, которая может составлять один или несколько сеансов. Обычно при проведении лазерной хирургии необходимости в анестезии нет.

На протяжении некоторого времени после завершения работы на коже остается ровный розовый участок. Его следует защищать от воздействия ультрафиолетовых лучей. В противном случае может возникнуть процесс пигментации кожи.

Лазерная хирургия стала настоящим прорывом в лечении варикозного расширения век и настоящим помощником флебологам. Для этого используется эндовазальный метод с применением высокоэнергетических лазеров. Такие операции характеризуются безболезненностью, высокой эффективностью и легким течением послеоперационного периода.

Лазерные операции в наше время вошли в хирургическую практику как современный способ оперативного лечения, способный решить многие проблемы, которые недоступны обычному скальпелю. Практическое применение лазеров в медицинских целях в нашей стране началось в средине 60-х годов прошлого столетия, и за прошедший период они все шире внедряются в различные области хирургии. Точность фокусировки, безопасность, безболезненность и другие особенности этого излучения позволяют осуществлять уникальные операции, используя луч, как лазерный скальпель.

Сущность технологии

По своей сути, хирургический лазер – это оптический квантовый генератор, формирующий узконаправленный, монохроматический, когерентный поток излучения. Принцип действия лазера основывается на генерировании светового потока, составленного из фотонов, которые образуются при возбуждении атомов системы накачки активной среды. Важным свойством излучения становится возможность создания непрерывного светового луча с высокой энергией и одной длины волны. Излучаемые фотоны имеют очень маленький угол рассеивания, что дает возможность тонкого фокусирования луча. Все эти особенности обеспечивают эффективное применение лазеров в медицине.

В хирургии находят применение достаточно мощные лазерные установки. Их использование позволяет обеспечивать удаление и разрушение пораженных тканей (в частности, выпаривание), а также термический клеточный некроз. Наиболее известные методы воздействия лазерного луча: абляция или непосредственное удаление тканей; прижигание, коагуляция; соединение, сварка; дробление при формировании волны ударного (импульсного) типа.

При хирургических операциях, как правило, используется способность концентрации значительной энергии в тонком луче, что обеспечивает сильный разогрев биологической ткани. На этом принципе основан так называемый лазерный скальпель. Так, при мощности излучателя порядка 20 Вт и фокусировки луча диаметром 1 мм развивается объемная плотность мощности излучения порядка 500 кВт/кв.см. При такой мощности ткань разогревается до нескольких сотен градусов практически мгновенно, что обеспечивает ее резку путем испарения. При этом глубина резания будет зависеть от продолжительности воздействия потока.

В чем преимущество технологии

Применение лазерной технологии в хирургической практики имеет ряд несомненных преимуществ по сравнению с классическим хирургическим вмешательством:


Уникальность лазерного излучения заключается в многогранности решаемых задач: эффективная вапоризация и деструкция пораженных тканей; сухая операционная зона; минимизация повреждения соседних органов; обеспечение гемостаза и аэростаза; купирование лимфатических потоков; возможность совмещения с эндоскопией и лапароскопией.

Использование лазерных установок позволяет проводить такие виды оперативного лечения: микрохирургия (наиболее популярны подобные операции в офтальмологии); устранение опухолевых образований небольшого размера; операции избирательного характера (устранение пигментных пятен, различных подкожных образований и дефектов, в частности татуировок); восстановление сосудистой проходимости; остановка кровотечений и операции на органах, в которые произошло кровоизлияние; соединение и сварка разрушенных тканей.

Возможности лазерной хирургии

Операции с использованием лазера проводятся во многих областях хирургии. Можно выделить следующие распространенные области применения:

Тонкости лазерных операций

При проведении рассматриваемых операций применяется специальный медицинский лазер с различной рабочей средой. Различаться может и способ доступа к очагу патологии. При проведении хирургического вмешательства с открытым доступом рассечение мягких тканей лазерным лучом не рекомендуется, так как оплавленные края тканей дольше срастаются и могут оставить значительный рубец. Лазером иссекается уже непосредственно оперируемый орган после обеспечения доступа другими методами.

Лазерная операция может осуществляться по эндоскопической технологии. В этом случае доступ к очагу обеспечивается, как правило, через физиологические проходы (пищевод, трахея, носовая или ротовая полость, мочеиспускательный канал, влагалище и т. д.), а также через маленькие прорезаемые искусственно отверстия.

В такие проходы с помощью эндоскопа вводятся зонды для внедрения специального миниатюрного инструмента, обеспечивающего лазерное излучение. При этом фотонный поток с заданными параметрами подводится по катетеру с гибким световодом.

Лазерные установки

При планировании операции особое внимание уделяется выбору типа медицинского лазера. В различных областях хирургии используется такие разновидности установок: СО2-лазер; неодимовый, гольмиевый, эрбиевый и диодный лазер. Установки различаются по рабочей среде накачки, что обеспечивает разные свойства лазерному излучению.

Достаточно распространено применение СО2-лазера, работающего на углекислом газе. Этот тип излучателя дает поток, имеющий высокое поглощение в воде и органических соединениях при обычной глубине проникновения порядка 0,1 мм. Такие свойства дают возможность осуществления операций в гинекологии, оториноларингологии, общей хирургии, дерматологии, кожной пластике и косметологии. Неглубокое проникновение луча позволяет разрезать биологическую ткань без значительного ожога, что особенно важно в офтальмологии.

Неодимовый лазер относится к твердотельному типу и работает с использованием кристаллов алюмоиттриевого граната, активированных ионами неодима. Глубина проникновения излучения достигает 7-9 мм. Основное применение в хирургии: объемная и глубинная коагуляция при урологических, гинекологических и онкологических операциях; ликвидация внутренних кровотечений.

В гольмиевом лазере устанавливаются кристаллы алюмоиттриевого граната, активированные ионами гольмия. Данный луч рассекает биологическую ткань на глубину 0,4-0,6 мм, что близко к характеристикам СО-лазера. Излучение гольмиевого источника легко передается по кварцевому оптическому волокну, что удобно при использовании малоинвазивной эндоскопической технологии. Этот лазер хорошо себя зарекомендовал при коагуляции сосудов размером до 0,6 мм, что вполне достаточно для эффективного оперативного лечения, а при оперировании глаз обеспечивает нужную безопасность.

Эрбиевый лазер обеспечивает проникновение с глубиной 0,05 мм, что обеспечивает очень эффективное поверхностное воздействие. Главные сферы его хирургического использования: микрошлифовка кожного покрова, перфорация кожи, испарение твердых зубных тканей, испарение поверхности глазной роговицы при лечении дальнозоркости. Следует особо выделить безопасность эрбиевого излучения при операциях на глазах.


Лазер (оптический квантовый генератор) - это оптический прибор, позволяющий получать направленное излучение в узком диапазоне длин волн, что и отличает его от излучений обычных источников света .
В принципе, в каждый лазер входят следующие основные компоненты:

  1. активное (рабочее) вещество, обладающее способностью переходить в особое возбужденное состояние и являющееся источником так называемого индуцированного излучения (например, газовая смесь, стержень из искусственного рубина, неодимового стекла и др.);
  2. источник возбуждения - устройство, которое сообщает активному веществу дополнительную энергию от внешнего источника (например, импульсные газоразрядные лампы - лампы накачки) и приводит его в возбужденное состояние;
  3. резонатор - устройство, позволяющее концентрировать поток излучения в определенном направлении;
  4. блок питания, обеспечивающий энергией источник возбуждения (батареи конденсаторов и др.).
В основе работы лазеров лежат принцип накопления активной средой световой энергии с последующим высвобождением ее в виде монохроматического пучка или процесс индуцированного излучения возбужденных квантовых систем, открытый А. Эн- штейном .
Световое излучение лазера обладает такими исключительными специфическими свойствами, как строгая направленность, высокая монохроматичность, когерентность (то есть постоянное во времени соотношение между фазами световых волн), обуславливающие распространение волны в пространстве с очень малым углом расхождения, что позволяет получать чрезвычайно высокую плотность энергии. Несфокусированный луч лазера обычно имеет ширину 1 -2 см, а при фокусировке - от 1 до 0,01 мм и меньше . Кроме того, лазеры способны излучать импульсы чрезвычайно короткой длительности - до 10~14 с.
По физическому состоянию активного вещества различают следующие типы лазеров:
  • твердотельные лазеры с твердым активным (рабочим) веществом (кристаллы рубина, неодимовые стекла, различные гранаты и т.д.); как правило, такие лазеры обладают большой мощностью излучения:
  • газовые лазеры, имеющие в качестве активного вещества различные газовые смеси (инертные газы неон и аргон, галогениды инертных газов и др.);
  • полупроводниковые лазеры (с использованием арсенида галлия и др.), обладающие большим КПД по сравнению с другими лазерами.
В зависимости от материала, служащего активным веществом, меняются интенсивность и длина волны излучения. Лазеры могут давать излучение как в невидимой (инфракрасной и ультрафиолетовой), так и в видимой части спектра. Длины волн лазерного излучения лежат в интервале от 0,3 до 300 мкм.
В зависимости от устройства лазера его излучение может происходить в виде отдельных импульсов (“выстрелов”) различной продолжительности (от нескольких миллисекунд до наносекунд) либо непрерывно. К первым относится, например, рубиновый или неодимовый лазер, а ко вторым - многие газовые лазе-

1.2. Механизмы действия лазерного излучения на биологические объекты
ры. Полупроводниковые лазеры могут работать как в импульсном, так и в непрерывном режиме. Импульсные лазеры, дающие кратковременные импульсы большей мощности, применяются в медицине в основном для одно- или многократного воздействия на различные патологические очаги, например, на опухоли и т.п. Менее мощные лазеры непрерывного действия предназначаются преимущественно для производства различных оперативных вмешательств .

Лазерная хирургия использует лазерный источник света (лазерный луч) для удаления больных тканей или лечения кровеносных сосудов. В качестве альтернативы, лазер используется в косметических целях; он может удалять морщины, родинки или татуировки.

Существует целый ряд различных типов лазеров, каждый из которых имеет различное использование и технические характеристики. В центрах лазерной хирургии применяют три типа лазера: диоксид углеродный (CO 2); YAG лазер; и импульсный.

Цели лазерной хирургии

Лазерная хирургия используется для:

  • вырезания или уничтожения больной ткани без нанесения вреда здоровой,
  • уменьшения или разрушения опухолей и поражений,
  • закрытия нервных окончаний в целях уменьшения послеоперационной боли,
  • прижигания (уплотнения) кровеносных сосудов для уменьшения потери крови,
  • герметизации лимфатических сосудов для минимизации отеков ,
  • удаления родинок, бородавок, татуировок,
  • уменьшения появления морщин на коже.

Меры предосторожности

Некоторые виды лазерной хирургии не должны проводиться в отношении беременных женщин, людей с тяжелыми заболеваниями сердца сердечной болезни или другими серьезными проблемами со здоровьем.

Кроме того, поскольку некоторые хирургические лазерные процедуры проводятся под общим наркозом, риски операции должны быть полностью обсуждены с анестезиологом.

Лазерная хирургия: описание

Лазер может быть применен для выполнения практически любой хирургической процедуры. Клиники лазерной хирургии используют различные лазерные системы, способные вырезать, коагулировать, испарять и удалять ткань. В большинстве центров лазерной хирургии применяются оригинальные лазерные устройства для выполнения как стандартных, так и нестандартных процедур. Применяя лазер, опытный и обученный хирург может выполнять различные задачи, значительно уменьшая потерю крови, послеоперационный дискомфорт пациента, вероятность инфекции раны, распространение некоторых видов рака, сводя к минимуму степень хирургии (в некоторых случаях).

Лазеры чрезвычайно полезны в открытых и лапароскопических операциях. Общие хирургические применения лазера включают хирургию груди, удаление желчного пузыря, резекцию кишечника, геморроидэктомию и многие другие.

Применение лазера

Лазерная хирургия часто является стандартной процедурой для специалистов в области:


Регулярное использование лазера практикуется для:

  • устранения родинок,
  • удаления доброкачественных, предраковых или раковых тканей или опухолей,

  • Подпишитесь на наш Ютуб-канал !
  • удаления миндалин,
  • удаления или пересадки волос .

Лазеры также применяют для лечения:


Преимущества лазерной хирургии

Часто называемые, как «бескровная хирургия», лазерные процедуры обычно дают меньшие кровотечения, чем обычные операции. Тепло, генерируемое лазером, уменьшает риск инфекции. Поскольку требуется меньший надрез, лазерные процедуры часто занимают меньше времени, чем традиционные операции. Герметизация кровеносных сосудов и нервов уменьшает кровотечение, отеки, рубцы, боль и продолжительность периода восстановления.

Диагностика и подготовка

Поскольку лазерная хирургия используется для лечения самых разнообразных условий, пациент должен получить у врача подробные инструкции о том, как подготовиться к конкретной процедуре.

Уход за выздоравливающим

Большинство лазерных операций может выполняться в амбулаторных условиях, и пациентам, как правило, разрешается покидать больницу или медицинский кабинет, когда их жизненно важные признаки стабилизировались.

Врач может назначить анальгетик (обезболивающее) после операции. Количество времени, необходимое для восстановления после хирургического вмешательства зависит от сложности операции и индивидуальных особенностей пациента.

Лазерная хирургия: риски

Лазерная хирургия может включать в себя риски, которые не связаны с традиционными хирургическими процедурами. Лазерный луч в сочетании с достаточно высокой энергией и поглощением может воспламенить одежду, бумагу и волосы. Риск возникновения пожара от лазера возрастает в присутствии кислорода. Важно также защититься от поражения электрическим током, так как лазеры требуют использования высокого напряжения.

Лазерный луч может затронуть здоровые ткани, в этом случае он вызывает повреждения, которые являются болезненными. Ошибки или неточности в лазерной хирургии могут привести к ухудшению зрения пациента или оставить шрамы на коже.

Все риски, меры предосторожности и возможные осложнения пациенту следует обсудить врачом.

Отказ от ответственности: Информация, представленная в этой статье про лазерную хирургию, предназначена только для информирования читателя. Она не может быть заменой для консультации профессиональным медицинским работником.

Введение


Свет использовался для лечения разнообразных болезней испокон веков. Древние греки и римляне часто «принимали солнце» в качестве лекарства. И список болезней, которые приписывалось лечить светом, был достаточно велик.

Настоящий рассвет фототерапии пришелся на 19 век – с изобретением электрических ламп появились новые возможности. В конце XIX столетия красным светом пытались лечить оспу и корь, помещая пациента в специальную камеру с красными излучателями. Также различные «цветовые ванны» (то есть свет различных цветов) успешно применялись для лечения психических заболеваний. Причём лидирующую позицию в области светолечения к началу двадцатого столетия занимала Российская Империя.

Но использование лазерных лучей в акупунктуре не ограничивается детьми, есть многочисленные взрослые, у которых есть страх перед иглой, хотя приложение абсолютно безболезненно. Связи древней традиции китайской медицины с современной технологией дополняют мировой опыт.

Цель использования электроники в акупунктуре заключается в том, чтобы усилить и, прежде всего, ускорить обезболивающий эффект, столь необходимый в случаях сильной боли, когда пациент нуждается в немедленном облегчении его болей. Стоит вспомнить, что акупунктура предназначена не только для прекращения боли, а иглоукалывание решает причину зла. Использование электронной иглоукалывания произошло так, что мы можем быстрее воздействовать на сильную боль.

В начале шестидесятых годов появились первые лазерные медицинские устройства. Сегодня лазерные технологии применяются практически при любых заболеваниях.

1. Физические основы применения лазерной техники в медицине


1.1 Принцип действия лазера


Основой лазеров служит явление индуцированного излучения, существование которого было постулировано А. Эйнштейном в 1916 г. В квантовых системах, обладающих дискретными уровнями энергии, существуют три типа переходов между энергетическими состояниями: индуцированные переходы, спонтанные переходы и безызлучательные релаксационные переходы. Свойства индуцированного излучения определяют когерентность излучения и усиления в квантовой электронике. Спонтанное излучение обусловливает наличие шумов, служит затравочным толчком в процессе усиления и возбуждения колебаний и вместе с безызлучательными релаксационными переходами играет важную роль при получении и удержании термодинамически неравновесного излучающего состояния.

Устройства, которые мы используем для электронной акупунктуры, имеют настройки интенсивности, частоты и электронного волнового типа, чтобы мы могли адаптировать электронный ток к желаемому эффекту в каждом случае. Открытие лазерного луча связано с теодором Майманом, физиком Калифорнии.

Первым ученым, изучающим эту технологию, был Альберт Эйнштейн. Позже Шавлоу и Таунс удостоились Нобелевской премии за исследования природы атомов и молекул, сначала сформулировали принципы Лазера. Есть новые вещества, которые изучаются. В то время хирурги были в восторге от многих возможностей, которые предлагал инструмент.

При индуцированных переходах квантовая система может переводиться из одного энергетического состояния в другое как с поглощением энергии электромагнитного поля (переход с нижнего энергетического уровня на верхний), так и с излучением электромагнитной энергии (переход с верхнего уровня на нижний).

Свет распространяется в виде электромагнитной волны, в то время как энергия при испускании излучения и поглощении сконцентрирована в световых квантах, при этом при взаимодействии электромагнитного излучения с веществом, как было показано Эйнштейном в 1917 г., наряду с поглощением и спонтанным излучением возникает вынужденное (индуцированное) излучение, которое образует основу для разработки лазеров.

Развитие лазерного оборудования было огромным, и инструменты считаются передовыми технологиями. Он был в городе, посещая семинар, и, пока он ждал, когда будет подан кофе, он сел на одну из скамей на площади Франклина, продиктовав проблему, которая его долго беспокоила: как добиться эмиссии ультракоротких волн частоты выше, чем радиолокаторы.

Он полагал, что это излучение будет иметь исключительную ценность для измерения и физико-химического анализа. Молодой учитель был Чарльз Хард Таунс, родившийся в Гринвилле, штат Южная Каролина, 28 июля. Он окончил Университет Дьюка на своей родине и получил докторскую степень в Калифорнийском технологическом институте.

Усиление электромагнитных волн за счет вынужденного излучения или инициирование самовозбуждающихся колебаний электромагнитного излучения в диапазоне сантиметровых волн и тем самым создание прибора, названного мазером (microwave amplification by stimulated emission of radiation), было реализовано в 1954 г. По предложению (1958 г.) распространить этот принцип усиления на значительно более короткие световые волны в 1960 г. был разработан первый лазер (light amplification by stimulated emission of radiation).

Создатель Теории Относительности опубликовал в этом году исследование усиляющего эффекта, который можно было бы получить при стимулированном излучении излучения. До тех пор все выбросы, которые мог производить человек, были радиоволнами - слишком широкими для экспериментов?

Таунс предположил, что можно было бы преобразовать вибрации молекул, заключенных в резонансную коробку, или что-то подобное в излучение, и что такое стимулированное излучение может быть усилено. Но когда он приехал в семинарию и изложил идеи, которые он поднял этим утром на площади, он заслужил мало внимания.

Лазер является источником света, с помощью которого может быть получено когерентное электромагнитное излучение, которое известно нам из радиотехники и техники сверхвысоких частот, а также в коротковолновой, в особенности инфракрасной и видимой, областях спектра.


1.2 Типы лазеров


Существующие типы лазеров можно классифицировать по нескольким признакам. Прежде всего по агрегатному состоянию активной среды: газовые, жидкостные, твердотельные. Каждый из этих больших классов разбивается на более мелкие: по характерным особенностям активной среды, типу накачки, способу создания инверсии и т.д. Например, из твердотельных довольно четко выделяется обширный класс полупроводниковых лазеров, в которых наиболее широко используется инжекционная накачка. Среди газовых выделяют атомарные, ионные и молекулярные лазеры. Особое место среди всех прочих лазеров занимает лазер на свободных электронах, в основе работы которого лежит классический эффект генерации света релятивистскими заряженными частицами в вакууме.

Молодой ученый, не считая разочарования, столкнулся с проблемой, обсуждаемой со своими учениками в Колумбийском университете, и начал тестирование с использованием различных источников радиационной молекулы. Через три года у него были первые результаты с газом аммиака, молекулы которого колебались 24 миллиарда раз в секунду, что сделало их восприимчивыми к превращению в волны длиной 2 мм в половину длины.

Обращаясь к молекулам к соответствующему электромагнитному стимулу, Таунс следовал за лавиной электронов, которая значительно увеличилась и оригинала. Как сказал сам Таунс, именно из дискуссий со своими учениками в Колумбии вышел новый новый словарь. Мы выбрали, - говорит он, - имя мазера для микроволнового усиления путем имитации излучения.


1.3 Характеристики лазерного излучения


Излучение лазера отличается от излучения обычных источников света следующими характеристиками:

Высокой спектральной плотностью энергии;

Монохроматичностью;

Высокой временной и пространственной когерентностью;

Высокой стабильностью интенсивности лазерного излучения в стационарном режиме;

Мы также предложили даже для шутки, инара, инфракрасного усиления, лазера усиления света путем вынужденного излучения и рентгеновского излучения. Только мазер и лазер преуспели. Мазер постепенно раскрыл свою удивительную полезность, превзошел лучшие радиоусилители и позволил себе астрономическую связь и обнаружение увольнений звездных радиостанций.

В те же годы, когда Таус основывался на принципах мазера, советские физики Александро Михайлович Прохоров и Николай Геннадиевич Басов прибыли с аналогичными результатами в Москве. Путь поиска теперь открыт для всех. Текст вызвал большой интерес к созданию инструмента, который будет известен как лазер.

Возможностью генерации очень коротких световых импульсов.

Эти особые свойства излучения лазера обеспечивают ему разнообразнейшие применения. Они определяются главным образом принципиально отличным от обычных источников света процессом генерации излучения за счет вынужденного излучения.

Основными характеристиками лазера являются: длина волны, мощность и режим работы, который бывает непрерывным либо импульсным.

Вместо газа, такого как аммиак, Майман доставил синтетический рубиновый цилиндр, к которому он добавил хромовые примеси. Концы цилиндра были тщательно отполированы, чтобы действовать как зеркала. Пучок света окружил рубиновый цилиндр, и когда он был освещен, он вызвал стимул: рубин выпустил короткий, очень интенсивный лазерный луч.

С тех пор название лазера приобрело необычайный и общественный резонанс, связанный в популярном воображении с приключениями научной фантастики. Строго говоря, это мощный инструмент. Подобно рычагу, шкив, наклонная плоскость, которая использует силу силы тяжести и инерции для усиления силы мышц, лазер использует силу двух атомов и молекул для усиления мощности излучения.

Лазеры находят широкое применение в медицинской практике и прежде всего в хирургии, онкологии, офтальмологии, дерматологии, стоматологии и других областях. Механизм взаимодействия лазерного излучения с биологическим объектом ещё изучен не до конца, но можно отметить, что имеют место либо тепловые воздействия, либо резонансные взаимодействия с клетками тканей.

По крайней мере в этом столетии свет был основной темой исследования физики. Вокруг него была построена одна из самых сложных и смелых теорий? квантовой механики. Он подтверждает очевидный парадокс в том, что свет - это одновременно и вещь, и процесс. Эта двойная роль света - вот что сделало лазер возможным? на самом деле, материализация и теория квантов.

Лазер сделал не что иное, как когерентный, скоординированный, волнообразный характер света. Зонды, которые производятся в воде, когда мы снимаем объект, вызывают обратные волны, когда они попадают на берега озера или танка, где мы делаем опыт. Если две волны являются когерентными, то есть они достигают своей высшей точки одновременно, они усиливаются. Это то, что делает лазер с помощью световых волн.

Лазерное лечение безопасно, оно очень актуально для людей с аллергией на медицинские препараты.

2. Механизм взаимодействия лазерного излучения с биотканями


2.1 Виды взаимодействия


Важное для хирургии свойство лазерного излучения - способность коагулировать кровенасыщенную (васкуляризованную) биоткань.

Квантовая природа света заключается в том, что атомы не испускают и энергию в непрерывной форме, а в небольших блоках - квантах. Когда атом бомбардируется энергией и внешним, один из его электронов поглощает фотон, и благодаря ему он прыгает на верхнюю орбиту; наоборот, когда атом теряет энергию и энергия, электрон испускает фотон и опускается на нижнюю орбиту.

Лазер стимулирует движение ряда электронов на верхнюю орбиту; когда он опускается, они излучают свет на той же частоте и точно, что затем отражается в кристаллических зеркалах аппарата. Это замечательное свойство позволило, например, измерить расстояние между Землей и Луной с погрешностью всего в 2 сантиметра. Еще одним большим преимуществом лазера является его чистый и монохроматический цвет.

В основном, коагуляция происходит за счет поглощения кровью лазерного излучения, ее сильного нагрева до вскипания и образования тромбов. Таким образом, поглощающей мишенью при коагуляции могут быть гемоглобин или водная составляющая крови. Это означает, что хорошо коагулировать биоткань будет излучение лазеров в области оранжево-зеленого спектра (КТР-лазер, на парах меди) и инфракрасных лазеров (неодимовый, гольмиевый, эрбиевый в стекле, СО2-лазер).

Его очень узкий пучок имеет исключительный параллелизм. Благодаря своим уникальным особенностям лазер совершенствует существующие технологии и открывает широкий спектр применений, которые еще не представляются человеком. Он уже стал незаменимым инструментом в телекоммуникациях, медицине, промышленности, искусстве? занимает все больше места в музыкальных, танцевальных и театральных постановках? и практически в любой области человеческой деятельности, где необходимо сверлить, сваривать, осветлять, точно или откалибровать.

Лучи - это специальные световые пучки, иногда очень интенсивные, способные путешествовать на большие расстояния без распространения. Название - это аббревиатура, полученная из английского термина «Усиление света» за счет стимулированного излучения. В нем описывается основное явление, используемое в аппарате для генерации лазерных лучей. Это же явление также используется в устройствах, излучающих СВЧ-лучи или инфракрасное излучение.

Однако, при очень высоком поглощении в биоткани, как, например, у эрбиевого гранатового лазера с длиной волны 2,94 мкм, лазерное излучение поглощается на глубине 5 - 10 мкм и может вообще не достигнуть объекта воздействия – капилляра.

Хирургические лазеры делятся на две большие группы: абляционные (от лат. ablatio – «отнятие»; в медицине – хирургическое удаление, ампутация) и неабляционные лазеры. Абляционные лазеры ближе к скальпелю. Необляционные лазеры действуют по другому принципу: после обработки какого-то объекта, например, бородавки, папилломы или гемангиомы, таким лазером, этот объект остаётся на месте, но через какое-то время в нём проходит серия биологических эффектов и он отмирает. На практике это выглядит так: новообразование мумифицируется, засыхает и отпадает.

Слово «излучение»? аббревиатуры не имеет ничего общего с радиацией. Относится к электромагнитному излучению, таким как: свет, радиоволны, инфракрасное излучение и рентгеновское излучение, т.е. волны, которые отличаются только их длиной волны. Такая длина соответствует расстоянию между последовательными максимальными точками в форме волны. Его значение варьируется от 10 км до 1 метра в случае радиоволн и от 1 до 1 мм в микроволновой печи.

За этим следует свет, ультрафиолетовое излучение, рентгеновское излучение и гамма-излучение. Набор этих волн представляет собой электромагнитный спектр. Любой атом можно считать сформированным ядром, вокруг которого движутся мелкие частицы, электроды. Электронное движение не действует никоим образом; допускаются только определенные классы движения, и каждый из них связан с определенным количеством энергии.

В хирургии применяются CO2-лазеры непрерывного действия. Принцип основан на тепловом воздействии. Преимущества лазерной хирургии состоят в том, что она является бесконтактной, практически бескровной, стерильной, локальной, даёт гладкое заживление рассечённой ткани, а отсюда хорошие косметические результаты.

В онкологии было замечено, что лазерный луч оказывает разрушающее действие на опухолевые клетки. Механизм разрушения основан на термическом эффекте, вследствие которого возникает разность температур между поверхностными и внутренними частями объекта, приводящая к сильным динамическим эффектам и разрушению опухолевых клеток.

Чем ближе электроды к ядру, тем меньше энергия атома. Говорят, что атом находится в основном состоянии, когда он имеет наименьшую возможную энергию. Если ваша энергия увеличивается, она переходит в одно из его различных возбужденных состояний, что соответствует более высоким уровням энергии.

Атом обычно находится в основном состоянии, но может входить в возбужденное состояние, если он поглощает энергию. Существует несколько способов создания возбуждения: при прохождении электрического разряда в материал, поглощении света, ударами между атомами, возникающими при высоких температурах.

Сегодня также очень перспективно такое направление, как фотодинамическая терапия. Появляется множество статей о клиническом применении данного метода. Суть его состоит в том, что в организм пациента вводят специальное вещество – фотосенсибилизатор . Это вещество избирательно накапливается раковой опухолью. После облучения опухоли специальным лазером происходит серия фотохимических реакций с выделением кислорода, который убивает раковые клетки.

Атом всегда стремится вернуться в более низкое энергетическое состояние. Когда он переходит от возбужденного уровня к основному состоянию, разность энергий должна быть высвобождена. Затем происходит излучение света или другого электромагнитного излучения.

Согласно квантовой теории, это излучение, испускаемое атомом в концентрированной форме? как своего рода частица, фотон. Фотоны чистого света с одной длиной волны равны между собой: все они несут одну и ту же энергию. Цвет света отражает энергию фотонов, которая обратно пропорциональна длине волны. Таким образом, фотоны синего света имеют больше энергии, чем энергия красного света.

Одним из способов воздействия лазерным излучением на организм является внутривенное лазерное облучение крови (ВЛОК), которое в настоящее время успешно используется в кардиологии, пульмонологии, эндокринологии, гастроэнтерологии, гинекологии, урологии, анестезиологии, дерматологии и других областях медицины. Глубокая научная проработка вопроса и прогнозируемость результатов способствуют применению ВЛОК как самостоятельно, так и в комплексе с другими методами лечения.

Для ВЛОК обычно используют лазерное излучение в красной области спектра
(0,63 мкм) мощностью 1,5–2 мВт. Лечение проводят ежедневно или через день; на курс от 3 до 10 сеансов. Время воздействия при большинстве заболеваний 15–20 мин за сеанс для взрослых и 5–7 мин для детей. Внутривенная лазерная терапия может быть осуществлена практически в любом стационаре или поликлинике. Преимуществом амбулаторной лазеротерапии является уменьшение возможности развития внутрибольничной инфекции, создается хороший психоэмоциональный фон, позволяя больному на протяжении длительного времени сохранять работоспособность, проводя при этом процедуры и получая полноценное лечение.

В офтальмологии лазеры применяют как для лечения, так и для диагностики. С помощью лазера производят приварку сетчатки глаза, сварку сосудов глазной сосудистой оболочки. Для микрохирургии по лечению глаукомы служат аргоновые лазеры, излучающие в сине-зелёной области спектра. Для коррекции зрения давно и успешно используются эксимерные лазеры.

В дерматологии с помощью лазерного излучения лечат многие тяжёлые и хронические заболевания кожи, а также выводят татуировки. При облучении лазером активируется регенеративный процесс, происходит активация обмена клеточных элементов.

Основной принцип применения лазеров в косметологии заключается в том, что свет воздействует только на тот объект или вещество, которое поглощает его. В коже свет поглощается особыми веществами - хромофорами. Каждый хромофор поглощает в определенном диапазоне длин волн, например, для оранжевого и зеленого спектра это гемоглобин крови, для красного спектра - меланин волос, а для инфракрасного спектра - клеточная вода.

При поглощении излучения происходит преобразование энергии лазерного луча в тепло на том участке кожи, который содержит хромофор. При достаточной мощности лазерного луча это приводит к тепловому разрушению мишени. Таким образом, с помощью лазера можно селективно воздействовать, например, на корни волос, пигментные пятна и другие дефекты кожи.

Однако вследствие переноса тепла происходит нагревание и соседних областей, даже если они содержат мало светопоглощающих хромофоров. Процессы поглощения и переноса тепла зависят от физических свойств мишени, глубины залегания и ее размера. Поэтому в лазерной косметологии важно тщательно подбирать не только длину волны, но и энергию, и длительность лазерных импульсов.

В стоматологии лазерное излучение является наиболее эффективным физиотерапевтическим средством лечения пародонтоза и заболеваний слизистой оболочки полости рта.

Лазерный луч применяется вместо иглоукалывания. Преимущества применения лазерного луча состоит в том, что отсутствует контакт с биологическим объектом, а, следовательно, процесс протекает стерильно и безболезненно при большой эффективности.

Световодные инструменты и катетеры для лазерной хирургии предназначены для доставки мощного лазерного излучения к месту проведения оперативного вмешательства при открытых, эндоскопических и лапароскопических операциях в урологии, гинекологии, гастроэнтерологии, общей хирургии, артроскопии, дерматологии. Позволяют осуществлять резание, иссечение, абляцию, вапоризацию и коагуляцию тканей при проведении хирургических операций в контакте с биотканью или в бесконтактном режиме применения (при удалении торца волокна от биоткани). Вывод излучения может осуществляться как с торца волокна, так и через окошко на боковой поверхности волокна. Могут использоваться как в воздушной (газовой), так и водной (жидкой) среде. По отдельному заказу для удобства пользования катетеры комплектуются легкосъёмной ручкой – держателем световода.

В диагностике лазеры применяются для обнаружения различных неоднородностей (опухолей, гематом) и измерения параметров живого организма. Основы диагностических операций сводятся к пропусканию через тело пациента (либо один из его органов) лазерного луча и по спектру или амплитуде прошедшего или отражённого излучения выводят диагноз. Известны методы по обнаружению раковых опухолей в онкологии, гематом в травматологии, а также по измерению параметров крови (практически любых, от артериального давления до содержания сахара и кислорода).

2.2 Особенности лазерного взаимодействия при различных параметрах излучения


Для целей хирургии луч лазера должен быть достаточно мощным, чтобы нагревать биоткань выше 50 - 70 °С, что приводит к ее коагуляции, резанию или испарению. Поэтому в лазерной хирургии, говоря о мощности лазерного излучения того или иного аппарата, оперируют цифрами, обозначающими единицы, десятки и сотни Вт.

Хирургические лазеры бывают как непрерывные, так и импульсные, в зависимости от типа активной среды. Условно их можно разделить на три группы по уровню мощности.

1. Коагулирующие: 1 - 5 Вт.

2. Испаряющие и неглубоко режущие: 5 - 20 Вт.

3. Глубоко режущие: 20 - 100 Вт.

Каждый тип лазера в первую очередь характеризуется длиной волны излучения. Длина волны определяет степень поглощения лазерного излучения биотканью, а, значит, и глубину проникновения, и степень нагрева как области хирургического вмешательства, так и окружающей ткани.

Учитывая, что вода содержится практически во всех типах биоткани, можно сказать, что для хирургии предпочтительно использовать такой тип лазера, излучение которого имеет коэффициент поглощения в воде более 10 см-1 или, что то же самое, глубина проникновения которого не превышает 1 мм.

Другие важные характеристики хирургических лазеров,
определяющие их применение в медицине:

мощность излучения;

непрерывный или импульсный режим работы;

способность коагулировать кровенасыщенную биоткань;

возможность передачи излучения по оптическому волокну.

При воздействии лазерного излучения на биоткань сначала происходит ее нагрев, а затем уже испарение. Для эффективного разрезания биоткани нужно быстрое испарение в месте разреза с одной стороны, и минимальный сопутствующий нагрев окружающих тканей с другой стороны.

При одинаковой средней мощности излучения короткий импульс нагревает ткань быстрее, чем непрерывное излучение, и при этом распространение тепла к окружающим тканям минимально. Но, если импульсы имеют низкую частоту повторения (менее 5 Гц), то непрерывный разрез провести сложно, это больше похоже на перфорацию. Следовательно, лазер предпочтительно должен иметь импульсный режим работы с частотой повторения импульсов более 10 Гц, а длительность импульса - минимально возможную для получения высокой пиковой мощности.

На практике оптимальная выходная мощность для хирургии находится в диапазоне от 15 до 60 Вт в зависимости от длины волны лазерного излучения и области применения.

3. Перспективные лазерные методы в медицине и биологии


Развитие лазерной медицины идет по трем основным ветвям: лазерная хирургия, лазерная терапия и лазерная диагностика. Уникальные свойства лазерного луча позволяют выполнять ранее невозможные операции новыми эффективными и минимально инвазивными методами.

Растет интерес к немедикаментозным методам лечения, включая физиотерапию. Нередко возникают ситуации, когда необходимо проводить не одну физиопроцедуру, а несколько, и тогда пациенту приходиться переходить из одной кабины в другую, несколько раз одеваться и раздеваться, что создает дополнительные проблемы и потерю времени.

Многообразие методик терапевтического воздействия требует применения лазеров с различными параметрами излучения. Для этих целей служат различные излучающие головки, которые содержат один или несколько лазеров и электронное устройство сопряжения сигналов управления от базового блока с лазером.

Излучающие головки подразделяются на универсальные, позволяющие использовать их как наружно, (с использованием зеркальных и магнитных насадок), так и внутриполостно с использованием специальных оптических насадок; матричные, имеющие большую площадь излучения и применяющиеся поверхностно, а также специализированные. Различные оптические насадки позволяют доставлять излучение к требуемой зоне воздействия.

Блочный принцип позволяет применять широкий спектр лазерных и светодиодных головок, обладающих различными спектральными, пространственно-временными и энергетическими характеристиками, что, в свою очередь, поднимает на качественно новый уровень эффективность лечения за счет сочетанной реализации различных методик лазерной терапии. Эффективность лечения определяется прежде всего эффективными методиками и аппаратурой, которая обеспечивает их реализацию. Современные методики требуют возможность выбора различных параметров воздействия (режим излучения, длина волны, мощность) в широком диапазоне. Аппарат лазерной терапии (АЛТ) должен обеспечивать эти параметры, их достоверный контроль и отображение и вместе с тем быть простым и удобным в управлении.

4. Лазеры, применяемые в медицинской технике


4.1 CO2-лазеры


CO 2 -лазер , т.е. лазер, излучающей составляющей активной среды которого является углекислый газ CO2, занимает особое место среди всего многообразия существующих лазеров. Этот уникальный лазер отличается прежде всего тем, что для него характерны и большой энергосъем, и высокий КПД. В непрерывном режиме получены огромные мощности – в несколько десятков киловатт, импульсная мощность достигла уровня в несколько гигаватт, энергия импульса измеряется в килоджоулях. КПД CO2-лазера (порядка 30%) превосходит КПД всех лазеров. Частота следования в импульсно-периодическом режиме может составить несколько килогерц. Длины волн излучения CO2-лазера находятся в диапазоне 9-10 мкм (ИК-диапазон) и попадают в окно прозрачности атмосферы. Поэтому излучение CO2-лазера удобно для интенсивного воздействия на вещество. Кроме того, в диапазон длин излучения CO2-лазера попадают резонансные частоты поглощения многих молекул.

На рисунке 1 показаны нижние колебательные уровни основного электронного состояния вместе с условным представлением формы колебаний молекулы CO2.

Рисунок 20 – Нижние уровни молекулы CO2


Цикл лазерной накачки CO2-лазера в стационарных условиях выглядит следующим образом. Электроны плазмы тлеющего разряда возбуждают молекулы азота, которые передают энергию возбуждения несимметричному валентному колебанию молекул CO2, обладающему большим временем жизни и являющемуся верхним лазерным уровнем. Нижним лазерным уровнем обычно является первый возбужденный уровень симметричного валентного колебания, сильно связанный резонансом Ферми с деформационным колебанием и поэтому быстро релаксирующий вместе с этим колебанием в столкновениях с гелием. Очевидно, что тот же канал релаксации эффективен в том случае, когда нижним лазерным уровнем является второй возбужденный уровень деформационной моды. Таким образом, CO2-лазер – это лазер на смеси углекислого газа, азота и гелия, где CO2 обеспечивает излучение, N2 – накачку верхнего уровня, а He – опустошение нижнего уровня.

CO2-лазеры средней мощности (десятки – сотни ватт) конструируются отдельно в виде относительно длинных труб с продольным разрядом и продольной прокачкой газа. Типичная конструкция такого лазера показана на рисунке 2. Здесь 1 – разрядная трубка, 2 – кольцевые электроды, 3 – медленное обновление среды, 4 – разрядная плазма, 5 – внешняя трубка, 6 – охлаждающая проточная вода, 7,8 – резонатор.


Рисунок 20 – Схема CO2-лазера с диффузионным охлаждением


Продольная прокачка служит для удаления продуктов диссоциации газовой смеси в разряде. Охлаждение рабочего газа в таких системах происходит за счет диффузии на охлаждаемую снаружи стенку разрядной трубки. Существенной является теплопроводность материала стенки. С этой точки зрения целесообразно применение труб из корундовой (Al2O3) или бериллиевой (BeO) керамик.

Электроды делают кольцевыми, не загораживающими путь к излучению. Джоулево тепло выносится теплопроводностью к стенкам трубки, т.е. используется диффузионное охлаждение. Глухое зеркало делают металлическим, полупрозрачное – из NaCl, KCl, ZnSe, AsGa.

Альтернативой диффузионному служит конвекционное охлаждение. Рабочий газ с большой скоростью продувают через область разряда, и джоулево тепло выносится разрядом. Применение быстрой прокачки позволяет поднять плотности энерговыделения и энергосъема.

CO2-лазер в медицине применяется почти исключительно как «оптический скальпель» для резания и испарения во всех хирургических операциях. Режущее действие сфокусированного лазерного пучка основано на взрывном испарении внутри- и внеклеточной воды в области фокусировки, благодаря чему разрушается структура материала. Разрушение ткани приводит к характерной форме краев раны. В узко ограниченной области взаимодействия температура 100 °С превышается лишь тогда, когда достигнуто обезвоживание (испарительное охлаждение). Дальнейшее повышение температуры приводит к удалению материала путем обугливания или испарения ткани. Непосредственно в краевых зонах образуется из-за плохой в общем случае теплопроводности тонкое некротическое утолщение толщиной 30­40 мкм. На расстоянии 300­600 мкм уже не образуется повреждение ткани. В зоне коагуляции кровеносные сосуды диаметром до 0,5­1 мм спонтанно закрываются.

Хирургические устройства на основе CO2-лазера в настоящее время предлагаются в достаточно широком ассортименте. Наведение лазерного луча в большинстве случаев осуществляется с помощью системы шарнирно установленных зеркал (манипулятора), оканчивающейся инструментом со встроенной фокусирующей оптикой, которым хирург манипулирует в оперируемой области.


4.2 Гелий-неоновые лазеры


В гелий-неоновом лазере рабочим веществом являются нейтральные атомы неона. Возбуждение осуществляется электрическим разрядом. В чистом неоне создать инверсию в непрерывном режиме трудно. Эта трудность, носящая достаточно общий для многих случаев характер, обходится введением в разряд дополнительного газа – гелия, выполняющего функцию донора энергии возбуждения. Энергии двух первых возбужденных метастабильных уровней гелия (рисунок 3) довольно точно совпадают с энергиями уровней 3s и 2s неона. Поэтому хорошо реализуются условия резонансной передачи возбуждения по схеме


Рисунок 20 – Схема уровней He-Ne лазера


При правильно выбранных давлениях неона и гелия, удовлетворяющих условию

можно добиться заселения одного или обоих уровней 3s и 2s неона, значительно превышающего таковое в случае чистого неона, и получить инверсию населенностей.

Опустошение нижних лазерных уровней происходит в столкновительных процессах, в том числе и в соударениях со стенками газоразрядной трубки.

Возбуждение атомов гелия (и неона) происходит в слаботочном тлеющем разряде (рисунок 4). В лазерах непрерывного действия на нейтральных атомах или молекулах для создания активной среды чаще всего используется слабоионизированная плазма положительного столба тлеющего разряда. Плотность тока тлеющего разряда составляет 100-200 мА/см2. Напряженность продольного электрического поля такова, что число возникающих на единичном отрезке разрядного промежутка электронов и ионов компенсирует потери заряженных частиц при их диффузии к стенкам газоразрядной трубки. Тогда положительных столб разряда стационарен и однороден. Электронная температура определяется произведением давления газа на внутренний диаметр трубки (0,63282 мкм) соответствует оптимальное Тор·мм.



Рисунок 20 – Конструктивная диаграмма He-Ne лазера


Характерными значениями мощности излучения гелий-неоновых лазеров следует считать десятки милливатт в областях 0,63 и 1,15 мкм и сотни в области 3,39 мкм. Срок службы лазеров ограничивается процессами в разряде и исчисляется годами. С течением времени в разряде происходит нарушение состава газа. Из-за сорбции атомов в стенках и электродах происходит процесс «жестчения», падает давление, меняется отношение парциальных давлений He и Ne.

Наибольшая кратковременная стабильность, простота и надежность конструкции гелий-неонового лазера достигаются при установке зеркал резонатора внутрь разрядной трубки. Однако при таком расположении зеркала сравнительно быстро выходят из строя за счет бомбардировки заряженными частицами плазмы разряда. Поэтому наибольшее распространение получила конструкция, в которой газоразрядная трубка помещается внутрь резонатора (рисунок 5), а ее торцы снабжаются окнами, расположенными под углом Брюстера к оптической оси, обеспечивая тем самым линейную поляризацию излучения. Такое расположение имеет целый ряд преимуществ – упрощается юстировка зеркал резонатора, увеличивается срок службы газоразрядной трубки и зеркал, облегчается их смена, появляется возможность управления резонатором и применения дисперсионного резонатора, выделения мод и т.п.


Рисунок 20 – Резонатор He-Ne лазера


Переключение между полосами генерации (рисунок 6) в перестраиваемом гелий-неоновом лазере обычно обеспечивается за счет введения призмы, а для тонкой перестройкой линии генерации обычно используется дифракционная решетка.


Рисунок 20 – Использование призмы Литроу


4.3 ИАГ-лазеры


Трехвалентный ион неодима легко активирует многие матрицы. Из них самыми перспективными оказались кристаллы иттрий-алюминиевого граната Y3Al5O12 (ИАГ) и стекла. Накачка переводит ионы Nd3+ из основного состояния 4I9/2 в несколько относительно узких полос, играющих роль верхнего уровня. Эти полосы образованы рядом перекрывающихся возбужденных состояний, их положения и ширины несколько меняются от матрицы к матрице. Из полос накачки быстрая передача энергии возбуждения на метастабильный уровень 4F3/2 (рисунок 7).


Рисунок 20 – Энергетические уровни трехвалентных редкоземельных ионов

Чем ближе к уровню 4F3/2 расположены полосы поглощения, тем выше КПД генерации. Достоинством кристаллов ИАГ является наличие интенсивной красной линии поглощения.

Технология роста кристаллов основана на методе Чохральского, когда ИАГ и присадка плавятся в иридиевом тигле при температуре около 2000 °С с последующим выделением части расплава из тигля с помощью затравки. Температура затравки несколько ниже температуры расплава, и при вытягивании расплав постепенно кристаллизуется на поверхности затравки. Кристаллографическая ориентировка закристаллизовавшегося расплава воспроизводит ориентировку затравки. Выращивание кристалла осуществляется в инертной среде (аргон или азот) при нормальном давлении с малой добавкой кислорода (1-2%). Как только кристалл достигает нужной длины его медленно остужают для предотвращения разрушения из-за термических напряжений. Процесс роста занимает от 4 до 6 недель и проходит под компьютерным управлением.

Неодимовые лазеры работают в широком диапазоне режимов генерации, от непрерывного до существенно импульсного с длительностью, достигающей фемтосекунд. Последняя достигается методом синхронизации мод в широкой линии усиления, характерной для лазерных стекол.

При создании неодимовых, как, впрочем, и рубиновых, лазеров реализованы все характерные методы управления параметрами лазерного излучения, разработанные квантовой электроникой. В дополнение к так называемой свободной генерации, продолжающейся в течение практически всего времени существования импульса накачки, широкое распространение получили режимы включаемой (модулированной) добротности и синхронизации (самосинхронизации) мод.

В режиме свободной генерации длительность импульсов излучения составляет 0,1…10 мс, энергия излучения в схемах усиления мощности составляет около 10 пс при использовании для модуляции добротности электрооптических устройств. Дальнейшее укорочение импульсов генерации достигается применением просветляющихся фильтров как для модуляции добротности (0,1…10 пс), так и для синхронизации мод (1…10 пс).

При воздействии интенсивного излучения Nd-ИАГ-лазера на биологическую ткань образуются достаточно глубокие некрозы (коагуляционный очаг). Эффект удаления ткани и тем самым режущее действие, незначительны по сравнению с действием CO2-лазера. Поэтому Nd-ИАГ-лазер применяется преимущественно для коагуляции кровотечения и для некротизирования патологически измененных областей ткани почти во всех областях хирургии. Поскольку к тому же передача излучения возможна через гибкие оптические кабели, то открываются перспективы применения Nd-ИАГ-лазера в полостях тела.


4.4 Полупроводниковые лазеры


Полупроводниковые лазеры испускают в УФ-, видимом или ИК-диапазонах (0,32…32 мкм) когерентное излучение; в качестве активной среды применяются полупроводниковые кристаллы.

В настоящее время известно свыше 40 пригодных для лазеров различных полупроводниковых материалов. Накачка активной среды может осуществляться электронными пучками или оптическим излучением (0,32…16 мкм), в p­n-переходе полупроводникового материала электрическим током от приложенного внешнего напряжения (инжекция носителей заряда, 0,57…32 мкм).

Инжекционные лазеры отличаются от всех других типов лазеров следующими характеристиками:

Высоким КПД по мощности (выше 10%);

Простотой возбуждения (непосредственное преобразование электрической энергии в когерентное излучение – как в непрерывном, так и в импульсном режимах работы);

Возможностью прямой модуляции электрическим током до 1010 Гц;

Крайне незначительными размерами (длина менее 0,5 мм; ширина не более 0,4 мм; высота не более 0,1 мм);

Низким напряжением накачки;

Механической надежностью;

Большим сроком службы (до 107 ч).


4.5 Эксимерные лазеры


Эксимерные лазеры , представляющие собой новый класс лазерных систем, открывают для квантовой электроники УФ диапазон. Принцип действия эксимерных лазеров удобно пояснить на примере лазера на ксеноне (нм). Основное состояние молекулы Xe2 неустойчиво. Невозбужденный газ состоит в основном из атомов. Заселение верхнего лазерного состояния, т.е. создание возбужденной устойчивости молекулы происходит под действием пучка быстрых электронов в сложной последовательности столкновительных процессов. Среди этих процессов существенную роль играют ионизация и возбуждение ксенона электронами.

Большой интерес представляют эксимеры галоидов инертных газов (моногалогенидов благородных газов), главным образом потому, что в отличие от случая димеров благородных газов соответствующие лазеры работают не только при электронно-пучковом, но и при газоразрядном возбуждении. Механизм образования верхних термов лазерных переходов в этих эксимерах во многом неясен. Качественные соображения свидетельствуют о большей легкости их образования по сравнению со случаем димеров благородных газов. Существует глубокая аналогия между возбужденными молекулами, составленными из атомов щелочного материала и галогена. Атом инертного газа в возбужденном электронном состоянии похож на атом щелочного металла и галогена. Атом инертного газа в возбужденном электронном состоянии похож на атом щелочного металла, следующий за ним в таблице Менделеева. Этот атом легко ионизуется, так как энергия связи возбужденного электрона мала. В силу высокого сродства к электрону галогена этот электрон легко отрывается и при столкновении соответствующих атомов охотно перепрыгивает на новую орбиту, объединяющую атомы, осуществляя тем самым так называемую гарпунную реакцию.

Ларингоскопия, микроларингоскопия, эзофагоскопия и бронхоскопия - виды эндоскопического вмешательства. Предоперационный и интраоперационный периоды. Особенности анестезии при эндоскопических лазерных вмешательствах. Меры безопасности от возгораний.

Процесс лазерного излучения. Исследования в области лазеров в диапазоне рентгеновских волн. Медицинское применение CO2–лазеров и лазеров на ионах аргона и криптона. Генерация лазерного излучения. Коэффициент полезного действия лазеров различных типов.

Лазерная терапия. Физико-химические основы действия НИЛИ на биообъекты. Лечебное применение волн оптического диапазона. Воздействие ИК излучения на биоткани. Хромотерапия и фотодинамическая терапия. Лечебный эффект. Лечение онкологических заболеваний.

Определение фотоэффекта. Виды фотоэффектов. Уравнение Эйнштейна. Применение фотоэффекта в медицине. Фотоэффект - это явление, связанное с освобождением электронов твердого тела (или жидкости) под действием электромагнитного излучения.

Физические основы лучевой терапии. Основные виды и свойства ионизирующих излучений. Корпускулярные и фотонные ионизирующие излучения (ИИ). Биологические основы лучевой терапии. Изменения химической структуры атомов и молекул, биологическое действие ИИ.

В медицине лазеры нашли свое применение в виде лазерного скальпеля. Его использование для проведения хирургических операций определяют следующие свойства:

Он производит относительно бескровный разрез, так как одновременно с рассечением тканей он коагулирует края раны “заваривая” не слишком крупные кровеносные сосуды;

Лазерный скальпель отличается постоянством режущих свойств. Попадание на твердый предмет (например, кость) не выводит скальпель из строя. Для механического скальпеля такая ситуация стала бы фатальной;

Лазерный луч в силу своей прозрачности позволяет хирургу видеть оперируемый участок. Лезвие же обычного скальпеля, равно как и лезвие электроножа, всегда в какой-то степени загораживает от хирурга рабочее поле;

Лазерный луч рассекает ткань на расстоянии, не оказывая никакого механического воздействия на ткань;

Лазерный скальпель обеспечивает абсолютную стерильность, ведь с тканью взаимодействует только излучение;

Луч лазера действует строго локально, испарение ткани происходит только в точке фокуса. Прилегающие участки ткани повреждаются значительно меньше, чем при использовании механического скальпеля;

Как показала клиническая практика, рана от лазерного скальпеля почти не болит и быстрее заживляется.

Практическое применение лазеров в хирургии началось в СССР в 1966 году в институте имени А. В. Вишневского. Лазерный скальпель был применен в операциях на внутренних органах грудной и брюшной полостей. В настоящее время лазерным лучом делают кожно-пластические операции, операции пищевода, желудка, кишечника, почек, печени, селезенки и других органов. Очень заманчиво проведение операций с использованием лазера на органах, содержащих большое количество кровеносных сосудов, например, на сердце, печени.

Особенно широкое применение нашли лазерные инструменты в хирургии глаза. Глаз, как известно, представляет орган, обладающий очень тонкой структурой. В хирургии глаза особенно важны точность и быстрота манипуляций. Кроме того выяснилось, что при правильном подборе частоты излучения лазера оно свободно проходит через прозрачные ткани глаза, не оказывая на них никакого действия. Это позволяет делать операции на хрусталике глаза и глазном дне, не делая никаких разрезов вообще. В настоящее время успешно проводятся операции по удалению хрусталика путём испарения его очень коротким и мощным импульсом. При этом не происходит повреждение окружающих тканей, что ускоряет процесс заживления, составляющий буквально несколько часов. В свою очередь, это значительно облегчает последующую имплантацию искусственного хрусталика. Другая успешно освоенная операция – приваривание отслоившейся сетчатки.

Лазеры довольно успешно применяются и в лечении таких распространённых сейчас заболеваний глаза как близорукость и дальнозоркость. Одной из причин этих заболеваний является изменение в силу каких-либо причин конфигурации роговицы глаза. С помощью очень точно дозированных облучений роговицы лазерным излучением можно исправить её изъяны, восстановив нормальное зрение.

Трудно переоценить значение применения лазерной терапии при лечении многочисленных онкологических заболеваний, вызванных неконтролируемым делением видоизменённых клеток. Точно фокусируя луч лазера на скоплении раковых клеток, можно полностью уничтожить эти скопления, не повреждая здоровые клетки.

Разнообразные лазерные зонды широко используются при диагностике заболеваний различных внутренних органов, особенно в тех случаях, когда применение других методов невозможно или сильно затруднено.

В лечебных целях применяется низкоэнергетическое лазерное излучение. В основе лазеротерапии лежит сочетание воздействия на организм импульсного широкополосного излучения ближнего инфракрасного диапазона совместно с постоянным магнитным полем . В основе терапевтического (лечебного) эффекта лазерного излучения с живым организмом лежат фотофизические и фотохимические реакции. На клеточном уровне в ответ на действие лазерного излучения изменяется энергетическая активность клеточных мембран, происходит активизация ядерного аппарата клеток системы ДНК – РНК – белка, а, следовательно, увеличение биоэнергетического потенциала клеток. Реакция на уровне организма в целом выражается в клинических проявлениях. Это обезболивающий, противовоспалительный и противоотечный эффекты, улучшение микроциркуляции не только в облучаемых, но и в окружающих тканях, ускорение заживления поврежденной ткани, стимуляция общих и местных факторов иммунозащиты, снижение в крови холецистита, бактериостатический эффект.