Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Объём крови в организме взрослого человека - около 5 л. В крови различают 2 компонента: плазму (межклеточное вещество) - 55- 60 % объёма крови (около 3 л) и форменные элементы - 40-45 % объёма крови. Плазма состоит из воды 90%, органических 9% и неорганических 1% веществ. Белки составляют 6% всех веществ плазмы, среди них преобладают альбумины, глобулины и фибриноген. Э ритроциты (красные кровяные тельца) - 4,3-5,3 у мужчин, и 3,9-4,5 10 12 /л у женщин, лейкоциты (белые кровяные клетки) - 4,8-7,7 10 9 /л, тромбоциты (кровяные пластинки) - 230-350 10 9 /л. Гемогр а мма - клинический анализ крови. Включает данные о количестве всех форменных элементов крови, их морфологических особенностях, СОЭ, содержании гемоглобина, цветном показателе, гематокритном числе, соотношении различных видов лейкоцитов и др. Функции крови Транспортная. Поддержание гомеостаза. Защитная функция. Гемокоагуляция. Мезодермальная паренхи́ма , или мезенхи́ма - зародышеваясоединительная тканьбольшинства многоклеточных животных и человека. Мезенхима возникает за счёт клеток разных зародышевых листков (эктодермы, энтодермы и мезодермы). Из мезенхимы образуются соединительная ткань,кровеносные сосуды, главные мышцы, висцеральный скелет, пигментные клетки и нижний слой соединительнотканной части кожи.

2. Эритроциты. Эритроциты (красные кровяные тельца) - безъядерные форменные элементы крови, содержащие гемоглобин. Основная функция эритроцитов - транспортировка кислорода и углекислого газа. Эритроциты составляют основную массу форменных элементов крови. Двояковогнутый диск эритроцита обеспечивает максимальное соотношение площади поверхности к объему. Помимо участия в тканевом дыхании, эритроциты выполняют питательную и защитную функции - они доставляют питательные вещества к клеткам организма, а также, связывают токсины и переносят на своей поверхности антитела. Кроме этого, эритроциты обеспечивают поддержание кислотно-основного равновесия в крови. Содержащиеся в эритроцитах ферменты катализируют жизненно важные биохимические процессы. Эритроциты принимают участие в процессе свертывания крови. Средний диаметр эритроцитов человека 7-8 мкм. Средняя продолжительность жизни эритроцитов составляет 3-4 месяца. Старые эритроциты разрушаются в селезенке. На смену умершим эритроцитам приходят молодые формы эритроцитов – ретикулоциты.. В норме их содержится в крови 0,2-1,2% от общего числа эритроцитов. Ретику лоциты содержат зернисто-сетчатые структуры - стареющие митохондрии, остатки эндоплазматической сети и рибосом. Наличие зернисто-сетчатых структур выявляется при специальной окраске - крезиловой синькой. 3 Лейкоциты. Ядерные клетки шаровидной формы по размеру - крупнее эритроцитов. В 1 л крови взрослого человека содержится 4,8-7,7x 10 9 . В цитоплазме лейкоцитов находятся гранулы первичные азурофильные (лизосомы) и вторичные. В зависимости от типа гранул лейкоциты делят на гранулоциты (зернистые) и агранулоциты (незернистые). Гранулоциты (нейтрофилы, базофилы и эозинофилы) содержат специфические и неспецифические гранулы. Агранулоциты (моноциты и лимфоциты) содержат только неспецифические азурофильные гранулы.Лейкоциты имеют сократительные белки (актин, миозин) и способны выходить из кровеносных сосудов, проникая между эндотелиальными клетками. Лейкоциты участвуют в защитных реакциях, уничтожая микроорганизмы и захватывая инородные частицы, осуществляя реакции гуморального и клеточного иммунитета.Лейкоцитарная формула (лейкограмма) - процентное соотношение различных видов лейкоцитов, определяемое при подсчёте их в окрашенном мазке крови под микроскопом. Лейкоцитарная формула здорового взрослого человека (предельные колебания, %)

5. Лимфоциты и моноциты. Лимфоциты: В нормальных условиях 27-45%. Клетки размером с эритроцит. Продолжительность жизни лимфоцитов колеблется в широких пределах от нескольких часов до 5 лет. Лимфоциты играют центральную роль в иммунных реакциях. Лимфоциты выходят из сосудов в соединительную ткань в ответ на специфические сигналы. Лимфоциты могут мигрировать через базальную мембрану эпителиев и внедряться в эпителии. Ядро занимает большую часть клетки, имеет круглую, овальную или слегка бобовидную форму. Структура хроматина компактная, ядро производит впечатление глыбчатого. Цитоплазма в виде узкой каймы, окрашивается базофильно в голубой цвет. В части клеток в цитоплазме обнаруживается окрашивающаяся в вишневый цвет азурофильная зернистость лимфоцитов. Лимфоциты подразделяют на различные категории по их величине: малые (4,.5-6 мкм), средние (7-10 мкм) и большие (10-18 мкм). К лимфоцитам относят сходные морфологически, но различающиеся функционально клетки. Выделяют следующие типы: В-лимфоциты, Т-лимфоциты (дифференцировка в тимусе) и NК-клетки. Т – лимфоциты это преимущественно лимфоциты крови (80%). Клетка предшественница Т – лимфоцитов поступает в тимус из красного костного мозга. Зрелые лимфоциты покидают тимус и их обнаруживают в периферической крови или лимфоидных органах В лимфоциты составляют 10% лимфоцитов крови. Плазматические клетки, в которые они дифференцируются, способны вырабатывать против конкретных антител соответствующие антигены. NK клетки - не Т, и не В лимфоциты. Составляют примерно 10% от всех лимфоцитов. Содержат цитолитические гранулы, уничтожающие трансформированные инфицированные вирусом и чужеродные клетки. Моноциты: Самые крупные лейкоциты размером от 12 до 20 мкм. Содержание в условиях нормы 4-9%. Ядро большое, рыхлое, с неравномерным распределением хроматина. Форма ядра бобовидная лопастовидная, подковообразная, реже круглое или овальное. Довольно широкая кайма цитоплазмы окрашивающейся менее базофильно чем у лимфоцитов. Может обнаруживаться мелкая азурофильная зернистость. В цитоплазме содержатся многочисленные лизосомы и вакуоли. Имеются мелкие удлиненные митохондрии. Комплекс Гольджи развит хорошо. Главная функция моноцитов и образующихся из них макрофагов – фагоцитоз. В переваривании участвуют лизосомные ферменты, а также формируемые внутриклеточно перекиси. Структуры, определяющие особенности клеток иммунной системы, обладают антигенными свойствами. Они получили название «Cluster of differentiation» (показатель дифференцировки) и обозначение CD.

6. Тромбоциты: это безъядерные фрагменты цитоплазмы, отделившиеся в красном костном мозгу от мегакариоцитов (гигантских клеток) и циркулирующие в крови. Имеют размер 2-4 мкм. Общее количество в крови 230-350 10 9 на 1л. Продолжительность жизни 4 дня. В центральной части тромбоцит содержит грануломер - выраженную зернистость, которая представлена гранулами, глыбками гликогена, ЭПС, митохондриями и является азурофильной. Периферическая часть тромбоцита - гомогенный гиаломер, который окрашивается по-разному в зависимости от возраста тромбоцита. На поверхности тромбоцита имеется большое количество фосфатных групп - компонентов мембранных фосфолипидов и фосфопротеинов.

7. Эмбриональный гемопоэз. Гемопоэз (лат. haemopoesis ), кроветворение - это процесс образования, развития и созревания клеток крови - лейкоцитов , эритроцитов , тромбоцитов у позвоночных . Выделяют: эмбриональный (внутриутробный) гемопоэз; постэмбриональный гемопоэз. Эмбриональный гемопоэз: В развитии крови как ткани в эмбриональный период можно выделить 3 основных этапа, последовательно сменяющих друг друга – мезобластический, гепатолиенальный и медуллярный. Первый, мезобластический этап – это появление клеток крови во внезародышевых органах, а именно в мезенхиме стенки желточного мешка , мезенхиме хориона и стебля . При этом появляется первая генерация стволовых клеток крови (СКК). Мезобластический этап протекает с 3-й по 9-ю неделю развития зародыша человека. Второй, гепатолиенальный этап начинается с 5-6-й недели развития плода, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация стволовых клеток крови. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют тимус, селезенку и лимфатические узлы. Третий, медуллярный (костномозговой) этап - это появление третьей генерации стволовых клеток крови в красном костном мозге , где гемопоэз начинается с 10-й недели и постепенно нарастает к рождению. После рождения костный мозг становится центральным органом гемопоэза. Постэмбриональный гемопоэз: Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови, который компенсирует физиологическое разрушение дифференцированных клеток. Он подразделяется на миелопоэз и лимфопоэз. Миелопоэз происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются эритроциты, гранулоциты, моноциты, тромбоциты, а также предшественники лимфоцитов. В миелоидной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют тимус, селезенку, лимфоузлы и некоторые другие органы. Лимфопоэз происходит в лимфоидной ткани, которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфоузлах. Она выполняет функции образования T- и B-лимфоцитов и иммуноцитов (например, плазмоцитов). Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т.е. относятся к тканям внутренней среды. В них представлены две основные клеточные линии -клетки ретикулярной ткани и гемопоэтические клетки .

9. Эритроцитопоэз. начинается со стволовой кроветворной клетки. Через стадию колониеобразующей мультипотентной клетки (КОЕТЭММ) формируются бурстобразующая (БОЭ-Э) и далее колониеобразующая единица эритроцитов (КОЕ-Э). Клетки этих колоний чувствительны к факторам регуляции пролиферации и дифференцировки..В IV-й класс включаются базофильный , полихроматофильный и оксифильный эритробласты. Проэритроциты, потом ретикулоциты сосавляют V-й класс и, наконец, формируются эритроциты (VI-й класс). В эритропоэзе на стадии оксифильного эритробласта происходит выталкивание ядра. В целом цикл развития эритроцита до выхода ретикулоцита в кровь продолжается до 12 суток. Общее направление эритропоэза характеризуется следующими основными структурно-функциональными изменениями: постепенным уменьшением размеров клетки, накоплением в цитоплазме гемоглобина, редукцией органелл, снижением базофилии и повышением оксифилии цитоплазмы, уплотнением ядра с последующим его выделением из состава клетки. В эритробластических островках эритробласты поглощают путем микропиноцитоза железо, поставляемое макрофагами, для синтеза гемоглобина. Развитие эритроцитов происходит в миелоидной ткани красного костного мозга. В периферическую кровь поступают только зрелые эритроциты и немного ретикулоцитов.

10. Гранулоцитопоэз . IV класс миелобласт. Размер 12-25 мкм. V класс промиелоцит - ядро грубой структуры, наблюдаются ядрышки. Цитоплазма резко базофильна. Появляется неспецифическая зернистость. Миелоцит - Размер 10-20 мкм. Ядро круглое или овальное, ядрышки не обнаруживаются. Цитоплазма содержит неспецифическую и специфическую зернистость. В зависимости от вида специфической зернистости выделяют нейтрофильные, эозинофильные и базофильные миелоциты. Метамиелоциты (юные формы) имеют ряд общих свойств: не делятся, обнаруживаются в крови, содержат ядро бобовидной формы. Класс VI Палочкоядерные клетки - ядро похоже на толстую изогнутую палочку без перемычек. Сегментоядерные клетки – ядро состоит из нескольких сегментов, разделённых узкими перетяжками.

11. Моноцитопоэз. V класс– промоноцит. Ядро - круглое, большое, а в цитоплазме нет гранул. Конечной стадией дифференцировки клеток моноцитарного ряда является не моноцит, а макрофаг, находящийся вне сосудистого русла. Дифференцировка клеток при моноцитопоэзе характеризуется увеличением размеров клетки, приобретением ядром бобовидной формы, снижением базофилии цитоплазмы, превращением моноцита в макрофаг. Главная функция моноцитов и образующихся из них макрофагов – фагоцитоз. Тромбоцитопоэз. Мегакариобласт - незрелая гигантская клетка костного мозга. Размер 25-40 мкм. Ядро большое неправильной формы, содержит до трех ядрышек. Цитоплазма базофильна, узкой полоской окружает ядро. Мегакариоцит гигантская клетка ККМ 40-45 мкм. При переходе от мегакариобласта к промегакариоциту ядро становится полиплоидным. Форма ядра неправильная бухтообразная. Цитоплазма базофильная содержит азурофильную зернистость. Мегакариоцит "проталкивает" часть своей цитоплазмы (в виде отростков) в щели капилляров красного костного мозга. После этого фрагменты цитоплазмы отделяются в виде пластинок ("тромбоцитов"). Остающаяся ядросодержащая часть мегакариоцита может восстанавливать объём цитоплазмы и образовывать новые тромбоциты.

13Лимфоцито и плазмоцитопоэз. лимфоцитопоэз в эмбриональном и постэмбриональном периодах осуществляется поэтапно, сменяя разные лимфоидные органы. В Т- и в В-лимфоцитопоэзе выделяют три этапа:

Костномозговой этап;

    этап антиген-независимой дифференцировки, осуществляемый в центральных иммунных органах;

    этап антиген-зависимой дифференцировки, осуществляемый в периферических лимфоидных органах. На первом этапе дифференцировки из стволовых клеток образуются клетки-предшественницы соответственно Т- и В-лимфоцитопоэза. На втором этапе образуются лимфоциты, способные только распознавать антигены. На третьем этапе из клеток второго этапа формируются эффекторные клетки, способные уничтожить и нейтрализовать антиген. Процесс развития Т- и В-лимфоцитов имеет как общие закономерности, так и существенные особенности и потому подлежит отдельному рассмотрению.

    Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:

    1 класс - стволовые клетки; 2 класс - полустволовые клетки-предшественницы лимфоцитопоэза; 3 класс - унипотентные Т-поэтинчувствительные клетки-предшественницы Т-лимфоцитопоэза, эти клетки мигрируют в кровеносное русло и с кровью достигают тимуса. Второй этап - этап антиген-независимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. Под влиянием биологически активного вещества тимозина, выделяемого стромальными клетками, унипотентные клетки превращаются в Т-лимфобласты - 4 класс, затем в Т-пролимфоциты - 5 класс, а последние в Т-лимфоциты - 6 класс. В тимусе из унипотентных клеток развиваются самостоятельно три субпопуляции Т-лимфоцитов:

  • супрессоры.

В результате второго этапа образуются рецепторные (афферентные или Т0) Т-лимфоциты - киллеры, хелперы, супрессоры. При этом лимфоциты в каждой из субпопуляций отличаются между собой разными рецепторами, однако имеются и клоны клеток, имеющие одинаковые рецепторы. В тимусе образуются Т-лимфоциты, имеющие рецепторы и к собственным антигенам, однако такие клетки здесь же разрушаются макрофагами. Третий этап - этап антиген-зависимой дифференцировки осуществляется в Т-зонах периферических лимфоидных органов - лимфоузлов, селезенки и других, где создаются условия для встречи антигена с Т-лимфоцитом (киллером, хелпером или супрессором), имеющим рецептор к данному антигену. Под влиянием соответствующего антигена Т-лимфоцит активизируется, изменяет свою морфологию и превращается в Т-лимфобласт, вернее в Т-иммунобласт, так как это уже не клетка 4 класса (образующаяся в тимусе), а клетка возникшая из лимфоцита под влиянием антигена. Процесс превращения Т-лимфоцита в Т-иммунобласт носит название реакции бласттрансформации. После этого Т-иммунобласт, возникший из Т-рецепторного киллера, хелпера или супрессора, пролиферирует и образует клон клеток. Т-киллерный иммунобласт дает клон клеток, среди которых имеются:

    Т-памяти (киллеры);

    Т-киллеры или цитотоксические лимфоциты, которые являются эффекторными клетками, обеспечивающими клеточный иммунитет, то есть защиту организма от чужеродных и генетически измененных собственных клеток. После первой встречи чужеродной клетки с рецепторным Т-лимфоцитом развивается первичный иммунный ответ - бласттрансформация, пролиферация, образование Т-киллеров и уничтожение ими чужеродной клетки. Т-клетки памяти при повторной встрече с тем же антигеном обеспечивают по тому же механизму вторичный иммунный ответ, который протекает быстрее и сильнее первичного.

14.Классификация, источники развития…. Соединительные ткани - это комплекс тканей мезенхимного происхождения , участвующих в поддержании гомеостаза внутренней среды и отличающихся от других тканей меньшей потребностью в аэробных окислительных процессах. Вместе с кровью и лимфойсоединительные ткани объединяются в т.н. «ткани внутренней среды ». Как и все ткани, они состоят из клеток и межклеточного вещества. Межклеточное вещество, в свою очередь, состоит из волокон и основного, или аморфного, вещества. Соединительная ткань составляет более половины массы тела человека. Она участвует в формировании стромы органов, прослоек между другими тканями в органах, формирует дерму кожи, скелет. Соединительные ткани формируют и анатомические образования - фасции и капсулы, сухожилия и связки, хрящи и кости. Полифункциональный характер соединительных тканей определяется сложностью их состава и организации.

Функции: Трофическая функция (в широком смысле) связана с регуляцией питания различных тканевых структур, с участием в обмене веществ и поддержанием гомеостаза внутренней среды организма. В обеспечении этой функции главную роль играет основное вещество, через которое осуществляется транспорт воды, солей, молекул питательных веществ. Защитная функция заключается в предохранении организма от механических воздействий и обезвреживании чужеродных веществ, поступающих извне или образующихся внутри организма. Это обеспечивается физической защитой (например, костной тканью), а также фагоцитарной деятельностью макрофагов и иммунокомпетентными клетками, участвующими в реакциях клеточного и гуморального иммунитета. Опорная , или биомеханическая, функция обеспечивается прежде всего коллагеновыми и эластическими волокнами, образующими волокнистые основы всех органов, а также составом и физико-химическими свойствами межклеточного вещества скелетных тканей (например, минерализацией). Чем плотнее межклеточное вещество, тем значительнее опорная, биомеханическая функция; пример - костные ткани. Пластическая функция соединительной ткани выражается в адаптации к меняющимся условиям существования, регенерации, участии в замещении дефектов органов при их повреждении (пример - формирование рубцовой ткани при заживлении ран). Морфогенетическая , или структурообразовательная, функция проявляется в формировании тканевых комплексов и обеспечении общей структурной организации органов (образование капсул, внутриорганных перегородок), а также регулирующем влиянии некоторых ее компонентов на пролиферацию и дифференцировку клеток различных тканей. Классификация: Разновидности соединительной ткани различаются между собой составом и соотношением клеток, волокон, а также физико-химическими свойствами аморфного межклеточного вещества. Соединительные ткани подразделяются на три вида:

    собственно соединительную ткань,

    соединительные ткани со специальными свойствами,

    скелетные ткани.

Собственно соединительная ткань включает:

    рыхлую волокнистую соединительную ткань;

    плотную неоформленную соединительную ткань;

    плотную оформленную соединительную ткань.

Соединительные ткани со специальными свойствами включают:

    ретикулярную ткань;

    жировые ткани;

    слизистую ткань.

Скелетные ткани включают:

    хрящевые ткани,

    костные ткани,

    цемент и дентин зуба.

В анатомическом строении тела человека различают клетки, ткани, органы и системы органов, которые осуществляют все жизненно важные функции. Таких систем всего насчитывается около 11:

  • нервная (ЦНС);
  • пищеварительная;
  • сердечно-сосудистая;
  • кроветворная;
  • дыхательная;
  • опорно-двигательная;
  • лимфатическая;
  • эндокринная;
  • выделительная;
  • половая;
  • кожно-мышечная.

Каждая из них имеет свои особенности, строение и выполняет определенные функции. Мы же рассмотрим ту часть кровеносной системы, которая является ее основой. Речь пойдет о жидкой ткани человеческого организма. Изучим состав крови, клетки крови и их значение.

Анатомия сердечно-сосудистой системы человека

Самым главным органом, образующим данную систему, является сердце. Именно этот мышечный мешочек играет основополагающую роль в циркуляции крови по организму. От него отходят разные по размерам и направлениям кровеносные сосуды, которые разделяются на:

  • вены;
  • артерии;
  • аорты;
  • капилляры.

Перечисленные структуры осуществляют постоянную циркуляцию специальной ткани организма - крови, которая омывает все клетки, органы и системы в целом. У человека (как и у всех млекопитающих) выделяют два круга кровообращения: большой и малый, и такая система называется замкнутой.

Основные функции ее следующие:

  • газообмен - осуществление транспорта (то есть движения) кислорода и диоксида углерода;
  • питательная, или трофическая - доставка необходимых молекул от органов пищеварения ко всем тканям, системам и так далее;
  • экскреторная - вывод вредных и отработанных веществ от всех структур к выделительным;
  • доставка продуктов эндокринной системы (гормонов) ко всем клеткам организма;
  • защитная - участие в иммунных реакциях посредством специальных антител.

Очевидно, что функции очень значительны. Именно поэтому настолько важно строение клеток крови, их роль и вообще характеристика. Ведь кровь - это и есть основа деятельности всей соответствующей системы.

Состав крови и значение ее клеток

Что представляет собой эта красная, со специфическим вкусом и запахом жидкость, которая появляется на любом участке тела при малейшем ранении?

По своей природе кровь является разновидностью соединительной ткани, состоящей из жидкой части - плазмы и форменных элементов клеток. Их процентное соотношение примерно 60/40. Всего в крови насчитывается около 400 различных соединений, как гормональной природы, так и витаминов, белков, антител и микроэлементов.

Объем данной жидкости в организме взрослого человека составляет около 5,5-6 литров. Потеря 2-2,5 из них смертельно опасна. Почему? Потому что кровь выполняет ряд жизненно необходимых функций.

  1. Обеспечивает гомеостаз организма (постоянство внутренней среды, в том числе и температуры тела).
  2. Работа клеток крови и плазмы приводит к распространению по всем клеткам важных биологически активных соединений: белков, гормонов, антител, питательных веществ, газов, витаминов, а также продуктов обмена.
  3. Благодаря постоянству состава крови поддерживается определенный уровень кислотности (рН не должна превышать значение 7,4).
  4. Именно данная ткань заботится о выведении из организма лишних, вредных соединений через выделительную систему и потовые железы.
  5. Жидкие растворы электролитов (солей) выходят с мочой, что обеспечивается исключительно работой крови и органов выделения.

Переоценить значение, которое имеют клетки крови человека, сложно. Рассмотрим более подробно строение каждого структурного элемента этой важной и уникальной биологической жидкости.

Плазма

Вязкая жидкость желтоватого цвета, занимающая до 60% от общей массы крови. Состав очень разнообразен (несколько сотен веществ и элементов) и включает в себя соединения из различных химических групп. Так, в эту часть крови входят:

  • Белковые молекулы. Считается, что каждый белок, существующий в организме, присутствует изначально в плазме крови. Особенно много альбуминов и иммуноглобулинов, играющих важную роль в защитных механизмах. Всего известно около 500 наименований белков плазмы.
  • Химические элементы в форме ионов: натрий, хлор, калий, кальций, магний, железо, йод, фосфор, фтор, марганец, селен и другие. Здесь присутствует практически вся Периодическая система Менделеева, примерно 80 наименований из нее находятся в плазме крови.
  • Моно-, ди- и полисахариды.
  • Витамины и коферменты.
  • Гормоны почек, надпочечников, половых желез (адреналин, эндорфин, андрогены, тестостероны и другие).
  • Липиды (жиры).
  • Ферменты как биологические катализаторы.

Самыми важными структурными частями плазмы являются клетки крови, которых насчитывается 3 основные разновидности. Они - вторая составляющая данной разновидности соединительной ткани, их строение и выполняемые функции заслуживают отдельного внимания.

Эритроциты

Мельчайшие клеточные структуры, размеры которых не превышают 8 мкм. Однако их количество - свыше 26 триллионов! - заставляет забыть о ничтожных объемах отдельной частицы.

Эритроциты - клетки крови, которые представляют собой лишенные обычных составных частей структуры. То есть в них нет ни ядра, ни ЭПС (эндоплазматической сети), ни хромосом, ни ДНК и так далее. Если с чем-либо сравнивать эту клеточку, то лучше всего подойдет двояковогнутый пористый диск - своеобразная губка. Вся внутренняя часть, каждая пора заполнена специфической молекулой - гемоглобином. Это белок, химическую основу которого составляет атом железа. Он легко способен взаимодействовать с кислородом и диоксидом углерода, что и является основной функцией эритроцитов.

То есть красные клетки крови просто наполнены гемоглобином в количестве 270 миллионов на одну штуку. Почему красные? Потому что именно такой цвет придает им железо, составляющее основу белка, а из-за подавляющего большинства эритроцитов в составе крови человека, она и приобретает соответствующий цвет.

По внешнему виду, при рассмотрении в специальный микроскоп, красные клетки крови - округлые структуры, будто сплющенные с верхней и нижней частей к центру. Их предшественниками являются стволовые клетки, вырабатываемые в костном мозге и депо селезенки.

Функция

Роль эритроцитов объясняется наличием гемоглобина. Эти структуры собирают кислород в легочных альвеолах и разносят его по всем клеткам, тканям, органам и системам. При этом совершается газообмен, ведь отдавая кислород, они забирают углекислый газ, который также транспортируют к местам выведения - легким.

В разном возрасте активность эритроцитов неодинакова. Так, например, у плода вырабатывается особый фетальный гемоглобин, который осуществляет транспорт газов на порядок интенсивнее, чем обычный, характерный для взрослых.

Существует распространенное заболевание, которое провоцируют эритроциты. Клетки крови, вырабатываемые в недостаточном количестве, приводят к анемии - серьезной болезни общего ослабления и истончения жизненных сил организма. Ведь нарушается нормальное снабжение тканей кислородом, что вызывает их голодание и, как следствие, быструю утомляемость и слабость.

Срок жизни каждого эритроцита - от 90 до 100 дней.

Тромбоциты

Еще одни важные клетки крови человека - тромбоциты. Это плоские структуры, размеры которых в 10 раз меньше, чем эритроцитов. Такие мелкие объемы позволяют им быстро скапливаться и слипаться между собой для выполнения своего прямого назначения.

В составе организма этих стражей порядка насчитывается около 1,5 триллиона штук, количество постоянно пополняется и обновляется, так как срок жизни их, увы, очень мал - всего около 9 дней. Почему стражи порядка? Это связано с функцией, которую они выполняют.

Значение

Ориентируясь в пристеночном сосудистом пространстве, клетки крови тромбоциты тщательно следят за исправностью и целостностью органов. Если вдруг где-то возникает разрыв тканей, они реагируют незамедлительно. Слипаясь между собой, они словно запаивают место повреждения и восстанавливают структуру. Кроме того, именно им во многом принадлежит заслуга свертывания крови на ране. Поэтому роль их заключается именно в обеспечении и восстановлении целостности всех сосудов, покровов и так далее.

Лейкоциты

Белые клетки крови, которые получили свое название за абсолютную бесцветность. Но отсутствие окраски нисколько не уменьшает их значимости.

Округлой формы тельца подразделяются на несколько основных видов:

  • эозинофилы;
  • нейтрофилы;
  • моноциты;
  • базофилы;
  • лимфоциты.

Размеры данных структур достаточно значительны по сравнению с эритроцитами и тромбоцитами. Достигают 23 мкм в диаметре и живут всего несколько часов (до 36). Функции их варьируются в зависимости от разновидности.

Белые клетки крови обитают не только в ней. На самом деле они только используют жидкость для того, чтобы добраться до необходимого пункта назначения и выполнить свои функции. Лейкоциты есть во многих органах и тканях. Поэтому конкретно в крови их количество невелико.

Роль в организме

Общее значение всех разновидностей белых телец - обеспечить защиту от чужеродных частиц, микроорганизмов и молекул.

Это основные функции, которые выполняют лейкоциты в организме человека.

Стволовые клетки

Срок жизни, который имеют клетки крови, незначителен. Лишь некоторые виды лейкоцитов, отвечающих за память, могут существовать всю жизнь. Поэтому в организме функционирует кроветворная система, состоящая из двух органов и обеспечивающая восполнение всех форменных элементов.

К ним относятся:

  • красный костный мозг;
  • селезенка.

Особенно большое значение имеет костный мозг. Он располагается в полостях плоских костей и вырабатывает абсолютно все клетки крови. У новорожденных детей в этом процессе принимают участие и трубчатые образования (голень, плечо, кисти и стопы). С возрастом остается такой мозг только в тазовых костях, но его хватает, чтобы обеспечить весь организм форменными элементами крови.

Еще один орган, в котором не вырабатываются, но запасаются на экстренные случаи достаточно объемные количества кровяных телец - селезенка. Это своеобразное "кровяное депо" каждого человеческого организма.

Зачем нужны стволовые клетки?

Стволовые клетки крови - самые важные недифференцированные образования, играющие роль в гемопоэзе - образовании самой ткани. Поэтому их нормальное функционирование - залог здоровья и качественной работы сердечно-сосудистой и всех остальных систем.

В тех случаях, когда человек теряет большое количество крови, которое сам мозг восполнить не может или не успевает, необходим подбор доноров (также это необходимо в случае обновления крови при лейкозах). Процесс этот сложный, зависит от множества особенностей, например, от степени родства и сопоставимости людей друг с другом по другим показателям.

Нормы клеток крови в медицинском анализе

Для здорового человека существуют определенные нормы количества форменных кровяных элементов при расчете на 1 мм 3 . Эти показатели следующие:

  1. Эритроциты - 3,5-5 миллионов, белок гемоглобин - 120-155 г/л.
  2. Тромбоциты - 150-450 тыс.
  3. Лейкоциты - от 2 до 5 тысяч.

Эти показатели могут варьироваться в зависимости от возраста и здоровья человека. То есть кровь - показатель физического состояния людей, поэтому ее своевременный анализ - залог успешного и качественного лечения.

Клетки (лейкоциты) отличаются друг от друга своим строением и функциями. По они подразделяются на агранулоциты и гранулоциты. Главным признаком, по которому они различаются, является наличие или отсутствие специфических , которые по-разному воспринимают окраску. Воспринимающие щелочную окраску гранулоциты базофилами. Гранулоциты, которые прокрашиваются кислотами, называются эозинофилами. Окрашивающиеся двумя разновидностями красителей гранулоциты называются нейтрофилами. К агранулоцитам относятся моноциты и лифмоциты. Они в свою очередь разделяются на В и Т-лимфоциты. Основная функция – это фагоцитоз, то есть поглощение чужеродных организмов или их частей. Нейтрофилы также выделяют вещества, которые обладают бактерицидным действием.

Моноциты принимают активное участие в обеспечении иммунитета, поскольку кроме фагоцитоза они вырабатывают вещества, стимулирующие в свою очередь выработку антител.

Эозинофилы умеют активно передвигаться, поглощать чужеродные организмы. Они захватывают и высвобождают гистамин, данная функция делает эти клетки участниками воспалительно-аллергических реакций. Большое значение в организме имеют базофилы, вышедшие из кровеносного русла в ткани (так называемые тучные клетки). Эти клетки содержат много гистамина, который вызывает отек и способствует ограничению распространения токсинов и инфекций. Т-лимфоциты обладают способностью уничтожать бактерии и раковые клетки. Они оказывают влияние на активность B-лимфоцитов, которые в свою очередь отвечают за гуморальный иммунитет (выработку антител).

Что такое лейкопения и лейкоцитоз

Уменьшение числа лейкоцитов в крови называется лейкопенией, увеличение - лейкоцитозом. Лейкопения – это показатель угнетения функции костного мозга в результате действия токсических веществ, (бензол, мышьяк и т.п.), некоторых медикаментов (левомицетин, сульфаниламиды, иммуран, бутадион, циклофосфан и т.п.), вирусов (вирусного гепатита, гриппа, кори и т.п.), микробов (бруцеллеза, брюшного тифа и т.п.), рентгеновского излучения, радиации, увеличения функции селезенки.

Нормальное число лейкоцитов в крови – 4.0-9.0х109/л.

Абсолютный лейкоцитоз появляется при острых воспалительных процессах, острых бактериальных инфекциях, некрозе тканей, аллергических состояниях, кровоизлияниях в мозг и закрытых травмах черепа, злокачественных опухолях, шоке, коме, острой кровопотере. Значительное увеличение количества белых кровяных клеток наблюдается при лейкозах. Относительный лейкоцитоз появляется вследствие поступления лейкоцитов в кровь из органов, которые служат в качестве депо. Он наблюдается после приема пищи, холодных и горячих ванн, интенсивной мышечной работы, после сильных эмоций.

Некоторые из этих клеток никогда в норме не покидают кровеносное русло, другие же для исполнения своего предназначения выходят в другие ткани организма, в которых обнаруживается воспаление или повреждение.

Клетки крови можно разделить на красные и белые – эритроциты и лейкоциты. Эритроциты всю свою жизнь – около 120 дней – циркулируют по кровеносным сосудам и переносят кислород и углекислый газ. Эритроциты составляют основную массу клеток крови. В процессе своего созревания они узко специализируются для выполнения своей самой главной функции – снабжение тканей организма кислородом и удаление углекислого газа.

Для этого они теряют все "лишние" клеточные элементы, приобретают специальную вогнутую форму, позволяющую им проникать в самые мелкие и изогнутые капилляры, и заполняют свою цитоплазму молекулами гемоглобина, способного обратимо связывать кислород. При различных заболеваниях может изменяться как форма, размер, количество эритроцитов, так и уровень гемоглобина. Для постановки правильного диагноза иногда приходится проводить дополнительные тесты, позволяющие выявить нарушения в строении мембраны эритроцита или наличие патологических форм гемоглобина.

Лейкоциты – белые клетки крови – борются с инфекциями и переваривают остатки разрушенных клеток , выходя для этого через стенки небольших кровеносных сосудов в ткани. Лейкоциты делятся на три главные группы: гранулоциты, моноциты и лимфоциты.

Моноциты, вместе с нейтрофилами, являются главными "санитарами организма", так как их основная функция – удаление обломков старых, отживших, свое клеток, и инородных элементов. Для этого моноциты, выходя из кровеносного русла, становятся макрофагами, которые значительно больше по размерам и дольше живут, чем нейтрофилы.

Лимфоциты являются главными клетками, опосредующими иммунный ответ. Они представлены двумя главными классами:

  1. B-лимфоциты производят антитела,
  2. T-лимфоциты убивают клетки, инфицированные вирусом, и регулируют активность других лейкоцитов.

Кроме того, существуют лимфоциты – естественные (природные) киллеры, способные убивать опухолевые клетки.

Тромбоциты содержаться в крови в большом количестве. По своей сути, они не являются обычными целыми клетками, а представляют собой мелкие клеточные фрагменты, отделившиеся от гигантских клеток мегакариоцитов. Мегакариоциты не циркулируют в крови, а находятся в костном мозге, где от них и отделяются "клеточные пластинки" – тромбоциты. Тромбоциты способны прилипать к внутренней поверхности поврежденного сосуда, выступая в качестве организатора заплатки, помогая восстановить целостность сосудистой стенки в процессе свертывания крови.

Образование и созревание большинства клеток крови (гемопоэз) происходит у взрослого человека в костном мозге, где из уникальной стволовой клетки образуется все разнообразие кровяных клеток. Костный мозг в норме расположен в крупных костях скелета человека, таких как бедренная, тазовая кости, грудина и некоторые др. Однако клетки лимфоидной природы созревают вне костного мозга – в органах иммунной системы, которыми являются некоторые участки слизистой кишечника, тимус, миндалины, селезенка и лимфоузлы. Количество клеток каждого вида образуется в строгом соответствии с потребностями организма, для чего существует сложный контроль. Поэтому, изменения в формуле анализа крови имеют огромное диагностическое значение. Опытный доктор, анализируя количественные и качественные сдвиги в анализе периферической крови, способен понять, среди каких патологических состояний следует проводить диагностический поиск.